SEAT No.

No. of printed pages: OL

[80] Eth

SARDAR PATEL UNIVERSITY B.Sc. (SEMESTER – III) EXAMINATION- 2021 PHYSICAL CHEMISTRY: US03CCHE22

DATE :	30/11/2021	TIME: 03.00 TO 0	5.00 p.m.	
DAY :	TUESDAY	Maximum N	larks : 70	
****	******	*************	****	
Q1.	Choose the correct option for the foll	owing MCQs. and rewrite it.	[10]	
1.	The real gases show nearly ideal beha	viour at,		
	(a) High P and low T	(b) Low P and low T		
	(c) High P and high T	(d) Low P and high T		
2.	If n and ϕ are the viscosity and fluidity	/ of a liquid respectively, then, ϕ =	Show th	
	(a) $1/n^2$ (b) ϕ^2 (c) $1/$	η (d) 1 / 2 η		
3. The excluded volume per molecule of a gas is,times the actual				
	Volume of a gas molecule.	he terms of Cemosis and Osmigic pres		
	(a) Three	(b) Four		
	(c) Five	(d) Six		
4	Which of the following equation expla	in the thermal effect of the reaction		
	at constant pressure?			
	(a) $\Delta H_2 = \Delta H_1 + \Delta C_0 \Delta T$	(b) $\Delta E = q + w$		
	(c) $\Delta T_{1} = K_{1}$ m	(d) None of these		
5	Which out of the following is incorrect	t?		
5.	(a) Work done on the system is -ve	(b) Heat flow from the system is -ve	Blácna	
	(a) Work done by the system is -ve	(d) Heat flow into the system is +ve		
6	The common method used to measur	e the freezing point depression is.		
0.	(a) Static method	(b) Beckmann method	R Billion	
	(a) Landsharger method	(d) None of these		
7	(c) Landsberger method (d) None of these			
1.	Solution have the same o	Sinotie pressure de the same		
	temperature.	(b) Isothermal		
	(a) Instania	(d) Concentrated		
-	(C) ISOTONIC	diluctrolyte at infinite dilution is taken		
8.	The mean activity coefficient of each	electrolyte at mininte unation is taken		
	as,	(c) 2 (d) 1		
16	(a) 4 (b) 3	(c) 2 (d) I		
9.	The ratio of molar conductance at a given dilution to the molar conductance			
	at infinite dilution gives the value of,			
	(a) Transport number	(b) Degree of dissociation		
	(c) Degree of association	(d) All of these		
10.	The electrodes which is used to transf	fer electrons to and from the solution		
	is called,	it of three companying the second source		
	(a) Reactive electrode	(b) Reversible electrode		
	(c) Inert electrode	(d) Gas electrode		

1

	Answer the following :	[08]	
Q2.	The unit of vanderwaal's constant 'b' is. (mole/liter, liter/mole)		
1.	The unit of viscosity in SI system is. $(Kg/m s, 10^{-1}Kg/m s)$		
2.	Thermoflask is an example of system. (closed , isolated)		
Э. Л	Isochoric process takes place at constant volume. (True or False)		
4. E	is also called Cryoscopic constant. $(K_b \text{ or } K_f)$		
5.	Colligative property relates the particles of, (Solute , solvent)		
7	The ionic strength is a property of, (Solvent , Solution)		
7. 8	Upon dilution the value of specific conductance is increase. (True or False)		
0.3	Give the answer of ANY TEN questions in short.	[20]	
1	Write any two postulates of kinetic theory of gases.		
2	Explain the terms cohesion and adhesion.		
3	Define Boyle's temperature. How is it related to vander waal's constants?		
4	State Hess's law of constant heat summation. Give its uses.		
5.	Define with example : An open system and closed system.		
6.	Show that : $\Delta E = q_v$.		
7.	Define the molal freezing point depression constant and derive unit of it.		
8.	Explain the term : Vapour pressure lowering.		
9.	Define the terms : Osmosis and osmotic pressure.		
10.	Define the terms : Molar conductance and specific conductance.		
11.	Define transference number. Is it constant for an ion?		
12.	Explain the effect of dilution on conductance and molar conductance.	[22]	
Q4.	Attempt ANY FOUR questions from the following :	[52]	
(A)	Derive the relation between critical constants and vander waars constants		
	using vander waal's equation of state.		
(B)	Explain the term surface tension. Describe the Capillary rise method and		
	Double capillary rise method for the measurement of surface tension of a		
	liquids.		
(C)	Write important properties of state function. Graphically show that months		
	not a state function.	(a) 5/8/	
(D)	How ΔH is differ from ΔE for solid-inquid and guses. Explain and oxygen to		
	example : When 78 gill of induit benzene is built deliption of the reaction is -781		
	form liquid water and carbon dioxide gas. The provide state of the reaction at constant volume.		
	K_{Cal} at 25 °C. Calculate the value of $\Delta = 0$ that the value of $\Delta = 0$		
(5)	Explain the term elevation in boiling point. Derive an expression correlating		
(E)	the elevation in boiling point ($\Delta T_{\rm b}$) and molal boiling point elevation		
	constant (K_1) when a non-volatile solute is added to a pure solvent.	o Soin	
(5)	Describe Dynamic method for the measurement of vapour pressure	T. P. Dotence	
(Г)	lowering. Solve the problem : What would be the vapour pressure of $0.5 \ll 1$	13	
	molal solution of a non-volatile solute in benzene at 30° C? The vapour $\frac{3}{24}$	LIBRARY)	
	pressure of pure benzene at 30° C is 119.6 torr.	10	
(G)	What is an electrolysis ? Explain the electrolysis of HCl solution by	V	
(0)	considering three compartments.	. v. Nag	
(H)	Explain Van't Hoff factor. Derive the relation : $\alpha = i - 1 / v - 1$.		
(11)			