¥	SEAT	No.	in .	

No of printed page : 4

SARDAR PATEL UNIVERSITY B.Sc.(SEMESTER - II) EXAMINATION - 2022

Wednesday, 27th April 2022 MATHEMATICS: US02CMTH51 (Elementary Algebra)

Maximum Marks: 70 Time: 12:00 Noon to 02:00 p.m. (10) Que.1 Fill in the blanks. (1) $(cis\theta)$ 9 has only distinct value. (a) 9 (b) 21 (c) 7 (d) 3 (2) $i \tan ix = \dots$ (a) $\tan x$ (b) $i \tanh x$ (c) $-\tanh x$ (d) (3) If $z = cis\theta$ and $\frac{1}{z} = cis(-\theta)$ then $z^p - \frac{1}{z^p} = \dots$ (c) $2i\cos p\theta$ (a) $2i\sin p\theta$ (b) $-2i\sin p\theta$ (4) Function $f: Z \to Z$ defined by f(x) = x + 5 is not oneone (b) not onto (c) bijection (d)

- linear (b) operator (c) matrix (d) None of these
- (6) If (a, m) = d then $ax \equiv b \pmod{m}$ has solution iff (a) d/b (b) b/d (c) d=b (d) none
- (7) For the system AX = B, if the $rank(A) \neq rank(A|B)$ then the system is (a) consistent (b) inconsistent (c) may be both (d) none
- (8) If A is a non singular matrix of order n then rank of A is (a) n-1 (b) n (c) 1 (d) 0
- 0 2 0 is (9) The matrix 0 0 2 Scalar matrix (b) Identity matrix (c) unit matrix (d)
- (10) Characteristic roots of the Identity matrix I of order 2 are (a) 1,-1 (b) 1,1 (c) 0,1 (d) -1,-1

Que.2 Write TRUE or FALSE.

- (1) Amplitude of $-\sqrt{3} + i$ is 150° .
- (2) $\sinh x = -i \sin x$.
- (3) Function $f: N \to N$ defined by f(x) = 2x is not onto.
- (4) $A \times B$ is trivial relation from A to B.
- (5) If A is an orthogonal matrix then A^{-1} is equal to A
- (6) If A is a square matrix then A + A' is Symmetric.
- (7) The constant term of the characteristics polynomial |A xI| of A is Adj. A.
- (8) The characteristic root of a real Skew-symmetric matrix is either zero or pure imaginary number.

(P. T. O.)

(8)

(5) Let
$$A=\{-2,-1,0,1,2\}$$
 . Let the function $f:A\to R$ is defined by $f(x)=x^2+1$. Find the range of f .

(6) Define one one and onto functions.

(7) If A is Hermitian, then prove that $B^{\Theta}AB$ is Hermitian.

(8) If
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -3 \\ 2 & 0 \end{bmatrix}$ then check whether $(AB)^T = B^T A^T$.

(9) If A and B are two orthogonal matrices then prove that AB and BA are also orthogonal .

(10) Find Characteristic polynomial of a matrix $A = \begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix}$

(11) Solve the system of equations x + 3y - 2z = 0; 2x - y + 4z = 0; x - 11y + 14z = 0

(12) Prove that the characteristic roots of a Hermitian matrix are all real.

Que.4 Attempt the following (Any FOUR)

(1) State and prove De-Moivres theorem .

(2) If $\tan(\theta + i\phi) = e^{i\alpha}$ then prove that $\theta = \left(n + \frac{1}{2}\right)\frac{\pi}{2}$ and $\phi = \frac{1}{2}\log \tan\left(\frac{\pi}{4} + \frac{\alpha}{2}\right)$.

(3) Let f be a function defined from the set X to the set Y and let A, B be the subsets of Y,

then prove that (i) $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ (ii) $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.

(4) If R and S are two equivalence relations on a set A then prove that $R \cap \tilde{S}$ is also an equivalence relation on A.

(5) Using Gauss-Jordan Method find the inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

(6) Convert $A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 & -1 \\ 0 & 0 & 5 & 10 & 0 & 15 & 5 \\ 2 & 6 & 0 & 8 & 4 & 18 & 6 \end{bmatrix}$ into its equivalent reduced row echelon form and hence find the rank of the matrix A.

(7) State and prove Cayley-Hamilton theorem. Also using it find inverse of non singular matrix.

(8) Find the characteristic roots and corresponding characteristic vectors of $\begin{bmatrix} -2 & -8 & -12 \\ 1 & 4 & 4 \\ 0 & 0 & 1 \end{bmatrix}$

(32)