

Chemistry of d - Block Elements

By: Dr. K. D. Patel & Dr. B. P. Dave

3.1 DEFINITION:

The elements lying between s-block and p-block elements of the periodic table are collectively known as transition elements. The elements from Sc_{21} to Zn_{30} (ten elements); Y_{39} to Cd_{48} (ten elements); La_{57} , Hf_{72} to Hg_{80} (ten elements); Ac_{89} , Ku_{104} , Ha_{105} , Unh_{106} etc. are called transition elements. These elements either in their atomic state or in any of their common oxidation state have partly filled (n-1) d orbitals of (n-1)th main shell. In these elements the differentiating electron enters (n-1) d orbitals of (n-1)th main shell are called d-block elements.

3.2 POSITION OF d-BLOCK ELEMENTS IN THE PERIODIC TABLE :

The position of d-block elements in the periodic table has been shown in figure 3.1. From the figure the following points may be noted:

- (i) d-block elements lie in between s- and p-block elements. i.e. these elements are located in the middle of the periodic table.
- (ii) d-block elements are present in 4th (Sc₂₁ to Zn₃₀ = 10 elements), 5th (Y₃₉ to Cd₄₈ = 10 elements), 6th (La₅₇, Hf₇₂ to Hg₈₀ = 10 elements) and 7th (incomplete) period which contains 8 elements viz. Ac₈₉, Ku₁₀₄ to Uun₁₁₀.
- (iii) d-block elements are present in III B (3), IV (B) (4), V B (5), VI B (6), VII B (7), VIII (8, 9, 10), I B (11) and II B (12) groups.

stry-2/2019/10

- Liements							
18 zero	Не2	Ne ₁₀	Ar ₁₈			Rn ₈₆	
(IB) (IIIA) (IVA) (VA) (VIA) (VIIA) zero		Ment		p-Block Elements			
16 (VIA)				ck Ele	i in the		
15 (VA)	4/2		(Łecp	p-Blo			
14 (IVA)							
13 (IIIA)	2.5	B ₅	Al ₁₃			TI ₈₁	
12 (IIB)				Zn ₃₀	Cd48	Hg ₈₀	
2 ↑			101				Uun 110
9 (miv)						nts	
∞ ↓						Eleme	
7 (VIIB)						d-Block Elements	
2 3 4 5 6 7 (IIA) (IIIB) (IVB) (VB) (VIB)						(-p	
s (VB)	6440						
4 IVB)						If ₇₂	.u 104
3 (C				Sc ₂₁	Y39	Las7 Hf72	Ac89 Ku104
⊕ 		4				1 7	88
		Be ₄		s-Block			Fr ₈₇ Ra ₈₈
- ((A)	H	Li3	Na	-5 6	ā 		Fr ₈
Groups → Period number ↓	1	7	6	4	5	9	_
Groups Period number							

Fig. 3.1 Position of d-block elements in the periodic table

General Chemistry-2 (US02CCHE21) Table 3.1 Complete and valence-shell configurations of the atoms of d-block elements $= 2.8 \cdot 18.8$ and $= 2.8 \cdot 18.8$ and $= 2.8 \cdot 18.8 \cdot 18.8$ 32, 18, 8. Valence-shell configurations are given in bracket.

Table 3.1 The elements shown in box have anomalous configurations

Group ↓	1 st or 3 <i>d</i> series (4 th period)	2 nd or 4 <i>d</i> series (5 th period)	3 rd or 5 <i>d</i> series (6 th period)	4 th or 6 <i>d</i> series (7 th period)
(3)	Sc_{21} $[Ar]_{18} 3d^{1} 4s^{2}$ $= 2, 8, 9, 2$ $(3d^{1} 4s^{2})$	Y_{39} [Kr] ₃₆ $4d^1 5s^2$ = 2, 8, 18, 9, 2 $(4d^1 5s^2)$	$ \begin{array}{c c} La_{57} \\ [Xe]_{54} & 4f^0 & 5d^1 & 6s^2 \\ = 2, 8, 18, 9, 2 \\ (4f^0 & 5d^1 & 6s^2) \end{array} $	Ac_{89} $[Rn]_{89} 5f^{0} 6d^{1} 7s^{2}$ $= 2, 8, 18, 32, 18, 9, 2$ $(5f^{0} 6d^{1} 7s^{2})$
IVB (4)	Ti_{22} $[Ar]_{18} 3d^{2} 4s^{2}$ $= 2, 8, 10, 2$ $(3d^{2} 4s^{2})$	Zr_{40} $[Kr]_{36} 4d^{2} 5s^{2}$ $= 2, 8, 18, 10, 2$ $(4d^{2} 5s^{2})$	Hf_{72} [Xe] ₅₄ $4f^{14}$ $5d^2$ $6s^2$ = 2, 8, 18, 32, 10, 2 $(4f^{14} 5d^2 6s^2)$	$[Rn]_{86} 5f^{14} 6d^2 7s^2$ = 2, 8, 18, 32, 32, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
VB (5)	V_{23} $[Ar]_{18} 3d^3 4s^2$ $= 2, 8, 11, 2$ $(3d^3 4s^2)$	$ \begin{bmatrix} Nb_{41} \\ 3 \\ \hline [Kr]_{36} & 4d^{4} & 5s^{4} \end{bmatrix} = 2, 8, 18, 12, 1 (4d^{4} & 5s^{1}) $	Ta_{73} [Xe] ₅₄ $4f^{14}$ $5d^3$ $6s^2$ = 2, 8, 18, 32, 11, 2 ($4f^{14}$ $5d^3$ $6s^2$)	[Rn] ₈₆ $5f^{14}$ $6d^3$ $7s^2$ = 2, 8, 18, 32, 32, 11, $(5f^{14}$ $6d^3$ $7s^2)$
VIB (6)	$ \begin{bmatrix} Cr_{24} \\ Ar]_{18} & 3d^5 & 4s^1 \\ = 2, 8, 13, 1 \\ (3d^5 & 4s^1) \end{bmatrix} $	Mo_{42} . $[Kr]_{36} \ 4d^5 \ 5s^1$ = 2, 8, 18, 13, 1 $(4d^5 \ 5s^1)$	W_{74} [Xe] ₅₄ $4f^{14}$ $5d^4$ $6s^2$ = 2, 8, 18, 32, 12, 2 ($4f^{14}$ $5d^4$ $6s^2$)	Unh_{106} $[Rn]_{86} 5f^{14} 6d^{4} 7s^{2}$ $= 2, 8, 18, 32, 32, 12$ $(5f^{14} 6d^{4} 7s^{2})$
(7)	Mn_{25} $[Ar]_{18} 3d^5 4s^2$ $= 2, 8, 13, 2$ $(3d^5 4s^2)$	Tc_{43} $[Kr]_{36} \ 4d^5 \ 5s^2$ $= 2, 8, 18, 13, 2$ $(4d^5 \ 5s^2)$	Re_{75} $[Xe]_{54} 4f^{14} 5d^{5} 6s^{2}$ $= 2, 8, 18, 32, 13, 2$ $(4f^{14} 5d^{6} 6s^{2})$	

Group	1 st or 3 <i>d</i> series (4 th period)	2 nd or 4 <i>d</i> series (5 th period)	3 rd or 5 <i>d</i> series (6 th period)	4 th or 6 <i>d</i> series (7 th period)
VIII	Fe ₂₆	Ru ₄₄	Os ₇₆	/a: 1]
(8)	$[Ar]_{18} 3d^6 4s^2$	[Kr] ₃₆ 4d ⁷ 5s*	$[Xe]_{54} 4f^{14} 5d^6 6s^2$	
	= 2, 8, 14, 2	= 2, 8, 18, 15, 1	= 2, 8, 18, 32, 14, 2	A 21
1 (25)	$(3d^6 4s^2)$	$(4d^7 5s^1)$	$(4f^{14} 5d^6 6s^2)$	
VIII	Co ₂₇	Rh ₄₅	Ir ₇₇	4.7
(9)	$[Ar]_{18} 3d^7 4s^2$	[Kr] ₃₆ 4d ⁸ 5s ¹	$[Xe]_{54} 4f^{14} 5d^7 6s^2$	· · · · · · · · · · · · · · · · · · ·
	= 2, 8, 15, 2	= 2, 8, 18, 16, 1	= 2, 8, 18, 32, 15, 2	
	$(3d^7 4s^2)$	$(4d^8 \ 5s^1)$	$(4f^{14} \ 5d^7 \ 6s^2)$	
VIII	Ni ₂₈	Pd ₄₆	Pt ₇₈	
(10)	$[Ar]_{18} 3d^8 4s^2$	[Kr] ₃₆ 4d ¹⁰ 5s ⁰	$[Xe]_{54} 4f^{14} 5d^9 6s^1$	The second secon
	= 2, 8, 16, 2	= 2, 8, 18, 18, 0	= 2, 8, 18, 32, 17, 1	
-	$(3d^8 4s^2)$	$(4d^{10} 5s^0)$	$(4f^{14} 5d^9 6s^1)$	Contact Market
IB	Cu ₂₉	Ag ₄₇	Au ₇₉	
(11)	$[Ar]_{18} 3d^{10} 4s^1$	$[Kr]_{36} 4d^{10} 5s^1$	$[Xe]_{54} 4f^{14} 5d^{10} 6s^{1}$	
	= 2, 8, 18, 1	= 2, 8, 18, 18, 1	= 2, 8, 18, 32, 18, 1	
	$(3d^{10} 4s^1)$	$(4d^{10} 5s^2)$	$(4f^{14} \ 5d^{10} \ 6s^1)$	
IIB	Zn ₃₀	Cd ₄₈	Hg ₈₀	
(12)	$[Ar]_{18} \ 3d^{10} \ 4s^2$	$[Kr]_{36} 4d^{10} 5s^2$	$[Xe]_{54} 4f^{14} 5d^{10} 6s^2$	
	= 2, 8, 18, 2	= 2, 8, 18, 18, 2	= 2, 8, 18, 32, 18, 2	an do many
	$(3d^{10} 4s^2)$	$(4d^{10} 5s^2)$	$(4f^{14} \ 5d^{10} \ 6s^2)$	A. A. A. S.

3.3 ELECTRONIC CONFIGURATION:

The electronic configurations of the d-block elements are given in Table 3.1. In this $^{\text{table}}$ [Ar]₁₈, [Kr]₃₆, [Xe]₅₄ and [Rn]₈₆ indicate the electronic configurations of Ar, Kr, Xe and Rn respectively, which are given below:

 $[Ar]_{18} = 2, 8, 8 \text{ (Three shells)}$

 $[Kr]_{36} = 2, 8, 18, 8$ (Four shells)

 $[X_e]_{54} = 2, 8, 18, 18, 8$ (Five shells)

 $[Rn]_{86} = 2, 8, 18, 32, 18, 8$ (Six shells)

The electronic configuration in Table 3.1 show that:

- (a) d-block elements can be defined as those elements in which the last electron (differentiating electron) enters (n-1)d orbitals (i.e. d-orbitals of the penultimale shell) or in which (n-1)d orbitals are progressively filled up with electrons shell) or in which (n-1)d orbitals are progressively filled up with electrons.
- (b) d-block elements are also defined as those elements whose two outer-most shells are incomplete (i.e. partially filled).
- (c) The valence electronic configurations of the atoms of d-block elements can be represented by a general electronic configuration $(n-1)d^{1-10}$ ns⁰⁻²

3.4 CLASSIFICATIONS OF d-BLOCK ELEMENTS IN 3d, 4d, 5d AND 6d SERIES (FOUR SERIES):

(1) 3d - series (1st series : 4th period) :

This series contains ten elements viz. Sc_{21} to Zn_{30} . These elements are present in 4h period. In the atoms of these elements the last electron goes to 3d-orbitals, i.e. in this series 3d orbitals are progressively filled up with electrons as we move from Sc_{21} to Zn_{30} . It may be noted that the configurations of Cr_{24} and Cu_{29} (two elements) are anomalous, since Cr_{24} has 5 electrons (instead of 4) in 3d orbitals and Cu_{29} has 10 electrons (instead of 9) in these orbitals. Thus the correct electronic configurations of Cr_{24} and Cu_{29} are $[Ar]_{18}$ $3d^5$ $4s^5$ [instead of $[Ar]_{18}$ $3d^4$ $4s^2$] and $[Ar]_{18}$ $3d^{10}$ $4s^1$ [instead of $[Ar]_{18}$ $3d^9$ $4s^2$] respectively. Complete and valence-shell electronic configurations of the atoms of 3d-series elements can be written as follows. Here $[Ar]_{18} = 2$, 8, 8 (three shells)

Complete configuration =
$$[Ar]_{18} 3d^{1-10} 4s^{1-2}$$

= 2, 8, (8 + 1 to 10), 1 or 2 (four shells)
= 2, 8, (9 to 18), 1 or 2
= 2, 8, $3s^2 p^6 d^{1-10} 4s^2$

Valence-shell configuration = $3d^{1-10} 4s^{1-2}$

(2) 4d - series (2nd series: 5th period):

This series also has ten elements namely Y_{39} to Cd_{48} . These elements are present the period. The elements of this series involve in the progressive filling of 4d orbitals as we proceed from Y_{39} to Cd_{48} . In this series there are more elements which have anomalous configurations. The elements having anomalous configurations are Nb₄₁, Mo₄₂, Ru₄₄, Rh₄₅ Pd₄₆ and Ag₄₇ (six elements). These anomalous configurations are explained on the basis of nuclear-electron and electron-electron forces existing in these atoms. Complete valence-shell electronic configurations of the atoms of 4d – series elements can be written as follows. Here $[Kr]_{36} = 2$, 8, 18, 8 (four shells).

Complete configuration = $[Kr]_{36}$ $4d^{1-10}$ $5s^{0-2}$ = 2, 8, 18 (8 + 1 to 10), 0 to 2 (five shells) = 2, 8, 18 (9 to 18), 0 to 2 = 2, 8, 18, $4s^2p^6d^{1-10}$ $5s^{0-2}$

Valence-shell configuration = $4d^{1-10} 5s^{0-2}$

(3) 5d – series (3rd series : 6th period) :

This series also contains ten elements which are La_{57} and Hf_{72} to Hg_{80} . The elements of this series involve the gradual filling of 5d orbitals. In between La_{57} and Hf_{72} , there are 14 elements, viz. Ce_{58} to Lu_{71} which are called Lanthanides or Lanthanones. These 14 elements involve the progressive filling of 4f orbitals and hence do not belong to 5d series. Thus at Lu_{71} , 4f -orbitals are completely filled. Consequently at La_{57} , 4f-orbitals are vacant ($4f^{0}$ configuration) while in the remaining nine elements (Hf_{72} to Hg_{80}) 4f - orbitals are compeltely filled ($4f^{14}$ configuration). The elements namely Pt_{76} and Au_{79} (two elements) have anomalous configurations. Complete and valence-shell electronic configurations of the atoms of 5d-series elements can be written as follows. Here [Xe]₅₄ = 2, 8, 18, 18, 8 (five shells)

Complete configuration = $[Xe]_{54} 4f^{0,14} 5d^{1-10} 6s^2$ = 2, 8, 18, $4s^2 4p^6 d^{10} f^{0,14} 5s^2p^6d^{1-10} 6s^2$ (six shells)

Valence-shell configuration = $4f^{0,14}$ $5d^{1-10}$ $6s^2$

(4) 6d-series (4th series: 7th period-incomplete period):

The elements of this series are present in 7^{th} period which is an incomplete period. At present this series consists of Ac_{89} , Ku_{104} , Ha_{105} and Unh_{106} (four elements)

These elements involve the gradual filling of 6d-orbitals. In between Ac_{89} and Ku_{104} there are 14 elements. viz. Th_{90} to Lw_{103} which are called Actinides or actinones. These 14 elements involve the prograssive filling of 5f-orbitals and donot belong to 6d-series. Thus at Lw_{103} , 5f-orbitals are completely filled. Consequently at Ac_{89} , 5f-orbitals are vacant (5f⁰ configuration) while in the remaining elements viz. Ku_{104} , Ha_{105} and Unh_{106} (three elements), 5f – orbitals are completely-filled ($5f^{14}$ configuration). Complete and valence-shell configurations of the atoms of 6d-series elements can be written as follows. Here $[Rn]_{86} = 2$, 8, 18, 32, 18, 8 (six shells).]

Complete configuration = $[Rn]_{86}$ 5 $f^{0,14}$ 6 d^{1-14} 7 s^2 = 2, 8, 18, 32, 5 s^2 p⁶ d¹⁰ $f^{0,14}$ 6 s^2 p⁶d¹⁻⁴ 7 s^2 (7 shells)

 $V_{\text{alence-shell configuration}} = 5f^{0,14}, 6d^{1-4} 7s^2$

QUESTIONS

		· · ·		
Q.1	Multiple C	Choice Questions:		
1.	d-block ele	ments are also defin	ed as those elements w	hose outer-most shells
	(a) one	√(b) two	(c) three	(d) four
2.	The electro	nic configuration of lectronic configuration	f the atoms of d-block ion is	elements can be represented by
. · · · · · · · · · · · · · · · · · · ·	(a) (n - 1)	$d^{1-10} ns^{0-2}$	(b) $(n-1) d^1$	
_	(c) $(n-1)$		(d) $(n-1) d^1$	⁻⁹ ns ^{0,1}
3.	The outer-s	hell configuration of	of Cr is	P. Book
•	(a) $3d^4 4s^2$	(b) $3d^5 4s^1$	(c) $3d^3 4s^2$	(d) 3d ⁶ 4s ⁰
	(Note: Sim	nilar question for ot	her d-block elements	can be asked)
4.	The number	of unpaired electro	ons in Cr-atom is	
	(a) 3	(b) 4	(c) 5	√(d) 6
	(Note : Sim	ilar question for ot	her d-block elements	can be asked)
5.	d-block elen	nents comprise the	sub-groups	
. '~ ((a) 3 to 12		(b) IIIA to VII	ÍΑ
(c) between I	IIA and IIIA	(d) IB to VIIII	3
6. F	e, Co, Ni b	elong to sub-group	•	
		,	(c) 11, 12, 13	(d) 14, 15, 16
	Ntoe : Simi	lar question for oth	er d-block elements o	ean be asked)
			ation of Mn $(Z = 25)$	
			(c) 2, 8, 14, 1	
(1	Note: Simil	lar question for oth	er d-block elements of	ean be asked)

ANSWERS

1. (b) 2. (a) 3. (b) 4. (d) 5. (a) 6. (b) 7. (a)

0.2 Short questions:

- What are transition elements?
- Give the general electronic configuration of d-block elements. 1.
- Give the position of d-block elements in periodic table. 2.
 - Give the general electronic configuration of Fe-atom.

(Note: Similar question can be asked for other d-block elements)

- Q.3 Long questions: Give the complete and valence-shell electron configurations of the atoms of
 - (i) 3d series, (ii) 4d series (iii) 5d series.
- Discuss the classification of d-block elements in 3d, 4d, 5d and 6d series.

