Chemistry of d - Block Elements By: Dr. K. D. Patel & Dr. B. P. Dave #### 3.1 DEFINITION: The elements lying between s-block and p-block elements of the periodic table are collectively known as transition elements. The elements from Sc_{21} to Zn_{30} (ten elements); Y_{39} to Cd_{48} (ten elements); La_{57} , Hf_{72} to Hg_{80} (ten elements); Ac_{89} , Ku_{104} , Ha_{105} , Unh_{106} etc. are called transition elements. These elements either in their atomic state or in any of their common oxidation state have partly filled (n-1) d orbitals of (n-1)th main shell. In these elements the differentiating electron enters (n-1) d orbitals of (n-1)th main shell are called d-block elements. # 3.2 POSITION OF d-BLOCK ELEMENTS IN THE PERIODIC TABLE : The position of d-block elements in the periodic table has been shown in figure 3.1. From the figure the following points may be noted: - (i) d-block elements lie in between s- and p-block elements. i.e. these elements are located in the middle of the periodic table. - (ii) d-block elements are present in 4th (Sc₂₁ to Zn₃₀ = 10 elements), 5th (Y₃₉ to Cd₄₈ = 10 elements), 6th (La₅₇, Hf₇₂ to Hg₈₀ = 10 elements) and 7th (incomplete) period which contains 8 elements viz. Ac₈₉, Ku₁₀₄ to Uun₁₁₀. - (iii) d-block elements are present in III B (3), IV (B) (4), V B (5), VI B (6), VII B (7), VIII (8, 9, 10), I B (11) and II B (12) groups. stry-2/2019/10 | - Liements | | | | | | | | |--|------|------------------|------------------|------------------|----------|------------------|-----------------------------------| | 18
zero | Не2 | Ne ₁₀ | Ar ₁₈ | | | Rn ₈₆ | | | (IB) (IIIA) (IVA) (VA) (VIA) (VIIA) zero | | Ment | | p-Block Elements | | | | | 16
(VIA) | | | | ck Ele | i in the | | | | 15
(VA) | 4/2 | | (Łecp | p-Blo | | | | | 14
(IVA) | | | | | | | | | 13
(IIIA) | 2.5 | B ₅ | Al ₁₃ | | | TI ₈₁ | | | 12
(IIB) | | | | Zn ₃₀ | Cd48 | Hg ₈₀ | | | | | | | | | | | | 2 ↑ | | | 101 | | | | Uun 110 | | 9
(miv) | | | | | | nts | | | ∞ ↓ | | | | | | Eleme | | | 7
(VIIB) | | | | | | d-Block Elements | | | 2 3 4 5 6 7
(IIA) (IIIB) (IVB) (VB) (VIB) | | | | | | (-p | | | s
(VB) | 6440 | | | | | | | | 4
IVB) | | | | | | If ₇₂ | .u 104 | | 3 (C | | | | Sc ₂₁ | Y39 | Las7 Hf72 | Ac89 Ku104 | | ⊕
 | | 4 | | | | 1 7 | 88 | | | | Be ₄ | | s-Block | | | Fr ₈₇ Ra ₈₈ | | - ((A) | H | Li3 | Na | -5 6 | ā
 | | Fr ₈ | | Groups → Period number ↓ | 1 | 7 | 6 | 4 | 5 | 9 | _ | | Groups
Period
number | | | | | | | | Fig. 3.1 Position of d-block elements in the periodic table General Chemistry-2 (US02CCHE21) Table 3.1 Complete and valence-shell configurations of the atoms of d-block elements $= 2.8 \cdot 18.8$ and $= 2.8 \cdot 18.8$ and $= 2.8 \cdot 18.8 \cdot 18.8$ 32, 18, 8. Valence-shell configurations are given in bracket. Table 3.1 The elements shown in box have anomalous configurations | Group
↓ | 1 st or 3 <i>d</i> series (4 th period) | 2 nd or 4 <i>d</i> series (5 th period) | 3 rd or 5 <i>d</i> series (6 th period) | 4 th or 6 <i>d</i> series (7 th period) | |------------|---|--|--|--| | (3) | Sc_{21} $[Ar]_{18} 3d^{1} 4s^{2}$ $= 2, 8, 9, 2$ $(3d^{1} 4s^{2})$ | Y_{39} [Kr] ₃₆ $4d^1 5s^2$ = 2, 8, 18, 9, 2 $(4d^1 5s^2)$ | $ \begin{array}{c c} La_{57} \\ [Xe]_{54} & 4f^0 & 5d^1 & 6s^2 \\ = 2, 8, 18, 9, 2 \\ (4f^0 & 5d^1 & 6s^2) \end{array} $ | Ac_{89} $[Rn]_{89} 5f^{0} 6d^{1} 7s^{2}$ $= 2, 8, 18, 32, 18, 9, 2$ $(5f^{0} 6d^{1} 7s^{2})$ | | IVB (4) | Ti_{22} $[Ar]_{18} 3d^{2} 4s^{2}$ $= 2, 8, 10, 2$ $(3d^{2} 4s^{2})$ | Zr_{40} $[Kr]_{36} 4d^{2} 5s^{2}$ $= 2, 8, 18, 10, 2$ $(4d^{2} 5s^{2})$ | Hf_{72} [Xe] ₅₄ $4f^{14}$ $5d^2$ $6s^2$ = 2, 8, 18, 32, 10, 2 $(4f^{14} 5d^2 6s^2)$ | $[Rn]_{86} 5f^{14} 6d^2 7s^2$ = 2, 8, 18, 32, 32, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10 | | VB (5) | V_{23} $[Ar]_{18} 3d^3 4s^2$ $= 2, 8, 11, 2$ $(3d^3 4s^2)$ | $ \begin{bmatrix} Nb_{41} \\ 3 \\ \hline [Kr]_{36} & 4d^{4} & 5s^{4} \end{bmatrix} = 2, 8, 18, 12, 1 (4d^{4} & 5s^{1}) $ | Ta_{73} [Xe] ₅₄ $4f^{14}$ $5d^3$ $6s^2$
= 2, 8, 18, 32, 11, 2
($4f^{14}$ $5d^3$ $6s^2$) | [Rn] ₈₆ $5f^{14}$ $6d^3$ $7s^2$
= 2, 8, 18, 32, 32, 11,
$(5f^{14}$ $6d^3$ $7s^2)$ | | VIB (6) | $ \begin{bmatrix} Cr_{24} \\ Ar]_{18} & 3d^5 & 4s^1 \\ = 2, 8, 13, 1 \\ (3d^5 & 4s^1) \end{bmatrix} $ | Mo_{42} .
$[Kr]_{36} \ 4d^5 \ 5s^1$
= 2, 8, 18, 13, 1
$(4d^5 \ 5s^1)$ | W_{74} [Xe] ₅₄ $4f^{14}$ $5d^4$ $6s^2$
= 2, 8, 18, 32, 12, 2
($4f^{14}$ $5d^4$ $6s^2$) | Unh_{106} $[Rn]_{86} 5f^{14} 6d^{4} 7s^{2}$ $= 2, 8, 18, 32, 32, 12$ $(5f^{14} 6d^{4} 7s^{2})$ | | (7) | Mn_{25} $[Ar]_{18} 3d^5 4s^2$ $= 2, 8, 13, 2$ $(3d^5 4s^2)$ | Tc_{43} $[Kr]_{36} \ 4d^5 \ 5s^2$ $= 2, 8, 18, 13, 2$ $(4d^5 \ 5s^2)$ | Re_{75} $[Xe]_{54} 4f^{14} 5d^{5} 6s^{2}$ $= 2, 8, 18, 32, 13, 2$ $(4f^{14} 5d^{6} 6s^{2})$ | | | Group | 1 st or 3 <i>d</i> series (4 th period) | 2 nd or 4 <i>d</i> series (5 th period) | 3 rd or 5 <i>d</i> series (6 th period) | 4 th or 6 <i>d</i> series
(7 th period) | |--------|---|---|---|--| | VIII | Fe ₂₆ | Ru ₄₄ | Os ₇₆ | /a: 1] | | (8) | $[Ar]_{18} 3d^6 4s^2$ | [Kr] ₃₆ 4d ⁷ 5s* | $[Xe]_{54} 4f^{14} 5d^6 6s^2$ | | | | = 2, 8, 14, 2 | = 2, 8, 18, 15, 1 | = 2, 8, 18, 32, 14, 2 | A 21 | | 1 (25) | $(3d^6 4s^2)$ | $(4d^7 5s^1)$ | $(4f^{14} 5d^6 6s^2)$ | | | VIII | Co ₂₇ | Rh ₄₅ | Ir ₇₇ | 4.7 | | (9) | $[Ar]_{18} 3d^7 4s^2$ | [Kr] ₃₆ 4d ⁸ 5s ¹ | $[Xe]_{54} 4f^{14} 5d^7 6s^2$ | · · · · · · · · · · · · · · · · · · · | | | = 2, 8, 15, 2 | = 2, 8, 18, 16, 1 | = 2, 8, 18, 32, 15, 2 | | | | $(3d^7 4s^2)$ | $(4d^8 \ 5s^1)$ | $(4f^{14} \ 5d^7 \ 6s^2)$ | | | VIII | Ni ₂₈ | Pd ₄₆ | Pt ₇₈ | | | (10) | $[Ar]_{18} 3d^8 4s^2$ | [Kr] ₃₆ 4d ¹⁰ 5s ⁰ | $[Xe]_{54} 4f^{14} 5d^9 6s^1$ | The second secon | | | = 2, 8, 16, 2 | = 2, 8, 18, 18, 0 | = 2, 8, 18, 32, 17, 1 | | | - | $(3d^8 4s^2)$ | $(4d^{10} 5s^0)$ | $(4f^{14} 5d^9 6s^1)$ | Contact Market | | IB | Cu ₂₉ | Ag ₄₇ | Au ₇₉ | | | (11) | $[Ar]_{18} 3d^{10} 4s^1$ | $[Kr]_{36} 4d^{10} 5s^1$ | $[Xe]_{54} 4f^{14} 5d^{10} 6s^{1}$ | | | | = 2, 8, 18, 1 | = 2, 8, 18, 18, 1 | = 2, 8, 18, 32, 18, 1 | | | | $(3d^{10} 4s^1)$ | $(4d^{10} 5s^2)$ | $(4f^{14} \ 5d^{10} \ 6s^1)$ | | | IIB | Zn ₃₀ | Cd ₄₈ | Hg ₈₀ | | | (12) | $[Ar]_{18} \ 3d^{10} \ 4s^2$ | $[Kr]_{36} 4d^{10} 5s^2$ | $[Xe]_{54} 4f^{14} 5d^{10} 6s^2$ | | | | = 2, 8, 18, 2 | = 2, 8, 18, 18, 2 | = 2, 8, 18, 32, 18, 2 | an do many | | | $(3d^{10} 4s^2)$ | $(4d^{10} 5s^2)$ | $(4f^{14} \ 5d^{10} \ 6s^2)$ | A. A. A. S. | ### 3.3 ELECTRONIC CONFIGURATION: The electronic configurations of the d-block elements are given in Table 3.1. In this $^{\text{table}}$ [Ar]₁₈, [Kr]₃₆, [Xe]₅₄ and [Rn]₈₆ indicate the electronic configurations of Ar, Kr, Xe and Rn respectively, which are given below: $[Ar]_{18} = 2, 8, 8 \text{ (Three shells)}$ $[Kr]_{36} = 2, 8, 18, 8$ (Four shells) $[X_e]_{54} = 2, 8, 18, 18, 8$ (Five shells) $[Rn]_{86} = 2, 8, 18, 32, 18, 8$ (Six shells) The electronic configuration in Table 3.1 show that: - (a) d-block elements can be defined as those elements in which the last electron (differentiating electron) enters (n-1)d orbitals (i.e. d-orbitals of the penultimale shell) or in which (n-1)d orbitals are progressively filled up with electrons shell) or in which (n-1)d orbitals are progressively filled up with electrons. - (b) d-block elements are also defined as those elements whose two outer-most shells are incomplete (i.e. partially filled). - (c) The valence electronic configurations of the atoms of d-block elements can be represented by a general electronic configuration $(n-1)d^{1-10}$ ns⁰⁻² ## 3.4 CLASSIFICATIONS OF d-BLOCK ELEMENTS IN 3d, 4d, 5d AND 6d SERIES (FOUR SERIES): #### (1) 3d - series (1st series : 4th period) : This series contains ten elements viz. Sc_{21} to Zn_{30} . These elements are present in 4h period. In the atoms of these elements the last electron goes to 3d-orbitals, i.e. in this series 3d orbitals are progressively filled up with electrons as we move from Sc_{21} to Zn_{30} . It may be noted that the configurations of Cr_{24} and Cu_{29} (two elements) are anomalous, since Cr_{24} has 5 electrons (instead of 4) in 3d orbitals and Cu_{29} has 10 electrons (instead of 9) in these orbitals. Thus the correct electronic configurations of Cr_{24} and Cu_{29} are $[Ar]_{18}$ $3d^5$ $4s^5$ [instead of $[Ar]_{18}$ $3d^4$ $4s^2$] and $[Ar]_{18}$ $3d^{10}$ $4s^1$ [instead of $[Ar]_{18}$ $3d^9$ $4s^2$] respectively. Complete and valence-shell electronic configurations of the atoms of 3d-series elements can be written as follows. Here $[Ar]_{18} = 2$, 8, 8 (three shells) Complete configuration = $$[Ar]_{18} 3d^{1-10} 4s^{1-2}$$ = 2, 8, (8 + 1 to 10), 1 or 2 (four shells) = 2, 8, (9 to 18), 1 or 2 = 2, 8, $3s^2 p^6 d^{1-10} 4s^2$ Valence-shell configuration = $3d^{1-10} 4s^{1-2}$ #### (2) 4d - series (2nd series: 5th period): This series also has ten elements namely Y_{39} to Cd_{48} . These elements are present the period. The elements of this series involve in the progressive filling of 4d orbitals as we proceed from Y_{39} to Cd_{48} . In this series there are more elements which have anomalous configurations. The elements having anomalous configurations are Nb₄₁, Mo₄₂, Ru₄₄, Rh₄₅ Pd₄₆ and Ag₄₇ (six elements). These anomalous configurations are explained on the basis of nuclear-electron and electron-electron forces existing in these atoms. Complete valence-shell electronic configurations of the atoms of 4d – series elements can be written as follows. Here $[Kr]_{36} = 2$, 8, 18, 8 (four shells). Complete configuration = $[Kr]_{36}$ $4d^{1-10}$ $5s^{0-2}$ = 2, 8, 18 (8 + 1 to 10), 0 to 2 (five shells) = 2, 8, 18 (9 to 18), 0 to 2 = 2, 8, 18, $4s^2p^6d^{1-10}$ $5s^{0-2}$ Valence-shell configuration = $4d^{1-10} 5s^{0-2}$ ### (3) 5d – series (3rd series : 6th period) : This series also contains ten elements which are La_{57} and Hf_{72} to Hg_{80} . The elements of this series involve the gradual filling of 5d orbitals. In between La_{57} and Hf_{72} , there are 14 elements, viz. Ce_{58} to Lu_{71} which are called Lanthanides or Lanthanones. These 14 elements involve the progressive filling of 4f orbitals and hence do not belong to 5d series. Thus at Lu_{71} , 4f -orbitals are completely filled. Consequently at La_{57} , 4f-orbitals are vacant ($4f^{0}$ configuration) while in the remaining nine elements (Hf_{72} to Hg_{80}) 4f - orbitals are compeltely filled ($4f^{14}$ configuration). The elements namely Pt_{76} and Au_{79} (two elements) have anomalous configurations. Complete and valence-shell electronic configurations of the atoms of 5d-series elements can be written as follows. Here [Xe]₅₄ = 2, 8, 18, 18, 8 (five shells) Complete configuration = $[Xe]_{54} 4f^{0,14} 5d^{1-10} 6s^2$ = 2, 8, 18, $4s^2 4p^6 d^{10} f^{0,14} 5s^2p^6d^{1-10} 6s^2$ (six shells) Valence-shell configuration = $4f^{0,14}$ $5d^{1-10}$ $6s^2$ ### (4) 6d-series (4th series: 7th period-incomplete period): The elements of this series are present in 7^{th} period which is an incomplete period. At present this series consists of Ac_{89} , Ku_{104} , Ha_{105} and Unh_{106} (four elements) These elements involve the gradual filling of 6d-orbitals. In between Ac_{89} and Ku_{104} there are 14 elements. viz. Th_{90} to Lw_{103} which are called Actinides or actinones. These 14 elements involve the prograssive filling of 5f-orbitals and donot belong to 6d-series. Thus at Lw_{103} , 5f-orbitals are completely filled. Consequently at Ac_{89} , 5f-orbitals are vacant (5f⁰ configuration) while in the remaining elements viz. Ku_{104} , Ha_{105} and Unh_{106} (three elements), 5f – orbitals are completely-filled ($5f^{14}$ configuration). Complete and valence-shell configurations of the atoms of 6d-series elements can be written as follows. Here $[Rn]_{86} = 2$, 8, 18, 32, 18, 8 (six shells).] Complete configuration = $[Rn]_{86}$ 5 $f^{0,14}$ 6 d^{1-14} 7 s^2 = 2, 8, 18, 32, 5 s^2 p⁶ d¹⁰ $f^{0,14}$ 6 s^2 p⁶d¹⁻⁴ 7 s^2 (7 shells) $V_{\text{alence-shell configuration}} = 5f^{0,14}, 6d^{1-4} 7s^2$ ### QUESTIONS | | | · · · | | | |---|-----------------|--|-------------------------------|-------------------------------------| | Q.1 | Multiple C | Choice Questions: | | | | 1. | d-block ele | ments are also defin | ed as those elements w | hose outer-most shells | | | (a) one | √(b) two | (c) three | (d) four | | 2. | The electro | nic configuration of lectronic configuration | f the atoms of d-block ion is | elements can be represented by | | . · · · · · · · · · · · · · · · · · · · | (a) (n - 1) | $d^{1-10} ns^{0-2}$ | (b) $(n-1) d^1$ | | | _ | (c) $(n-1)$ | | (d) $(n-1) d^1$ | ⁻⁹ ns ^{0,1} | | 3. | The outer-s | hell configuration of | of Cr is | P. Book | | • | (a) $3d^4 4s^2$ | (b) $3d^5 4s^1$ | (c) $3d^3 4s^2$ | (d) 3d ⁶ 4s ⁰ | | | (Note: Sim | nilar question for ot | her d-block elements | can be asked) | | 4. | The number | of unpaired electro | ons in Cr-atom is | | | | (a) 3 | (b) 4 | (c) 5 | √(d) 6 | | | (Note : Sim | ilar question for ot | her d-block elements | can be asked) | | 5. | d-block elen | nents comprise the | sub-groups | | | . '~ (| (a) 3 to 12 | | (b) IIIA to VII | ÍΑ | | (| c) between I | IIA and IIIA | (d) IB to VIIII | 3 | | 6. F | e, Co, Ni b | elong to sub-group | • | | | | | , | (c) 11, 12, 13 | (d) 14, 15, 16 | | | Ntoe : Simi | lar question for oth | er d-block elements o | ean be asked) | | | | | ation of Mn $(Z = 25)$ | | | | | | (c) 2, 8, 14, 1 | | | (1 | Note: Simil | lar question for oth | er d-block elements of | ean be asked) | ### **ANSWERS** 1. (b) 2. (a) 3. (b) 4. (d) 5. (a) 6. (b) 7. (a) ### 0.2 Short questions: - What are transition elements? - Give the general electronic configuration of d-block elements. 1. - Give the position of d-block elements in periodic table. 2. - Give the general electronic configuration of Fe-atom. (Note: Similar question can be asked for other d-block elements) - Q.3 Long questions: Give the complete and valence-shell electron configurations of the atoms of - (i) 3d series, (ii) 4d series (iii) 5d series. - Discuss the classification of d-block elements in 3d, 4d, 5d and 6d series.