B.Sc. (Semester - 6)
Subject: Physics
Course: USO6CPHY21
Quantum Mechanics
UNIT -1 General Formalism of Wave Mechanics
The Schrddinger Equation and Probability for N-Particle System:
A system of N partlcles is represented by the position and momentum varlables

The operators are

ol sy
E - Lﬁa, i = —ihV;

o g a4 0
where, Vi= (ara—y%)
[ L L

These operators have to act on the wave function':':f 'I‘he' 3N coordinates of the N
particles can be taken as the coordinates of a single pomt |n‘e':'3N dimensional space. Such
a space is called the configuration space. &N\

The wave equation for N-paricle system can be wrltten as

- AW (X, X,,

SH ETRT, —iAT, .
lth, t)l‘P(Xg, Xz;
This is the general form of: the Schrodlnger equation.

The Fundamental P;i'stglates of Wave Mechanics:

Postulate: 1 ”The srate of a quantum mechanical system is described or represented by a
wave function."%’\(X t) L
Postulate 2 *The superposition principle :

, f'f ‘Pl and ¥, are wave functions for any two states of a given system then
correspondmg to every linear combination (C,¥, + C,¥,) of the two functions, there exists
a state of the system.

This is a fundamental principal of guantum mechanics to which there is no
correspondence in classical mechanics. It is the possibility of superposition which makes
interference phenomena possible.

The scalar product of ¢ and W is defined as

@) = | & (R)e(R)de

This follows that,
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(%) =¥, )"
(b, C¥) =C(p,¥), and (CH,¥P)=C"(d, %)
The norm of y=wv) =0
(b} Representation of dynamical variables; Expectation values, Observables:
Postulates: 3
Fach dynamical variable A ()? : ﬁ) is represented in quantum mechanics by a linear operator
Aoy = A(Xop, Bop) = A(X, —ihV)
The operator acts on the wave functions of the system. The effect of an operator A
on a wave function ¥ is to convert into another wave function denoted by A'P
The linearity of the operator means that a linear combination of two waVe' fu ,_ctlons
¥, and ¥, is converted into the same linear combination of A¥, ancj_All{_;. ¥ 4
AGH: +GW) = GAPD +6AY) (NN
The dynamical variables in quantum mechanics do not commut‘{g
ie. AB+# BA &
The difference AB — BA is called the commutator of A a ':'d,B A notation
[4,B] = AB — BA ' 3
The commutation relations of position and momentum 15 deduce as follows:
» For one dimension

(xp — pO)W = [x(—mf?)‘ﬂ- (:“iﬁﬁ)x]w

= f [x " — —(x‘}’)]

x___ —

6’}’ ox a¥
dx  Ox x%]

(xp px)'i” . Lﬁ’}’

» For three dlmen5|ons

s [xp] =

dx; . .
Where, a—x‘ = §;; is called Kronecker delta function.
i

Oy =1 ifi=]
and 6;; =0 ifi=+j
Also, [xi,xj] =0, [pl-,pj] =0
We can write,
[x,0.:] = [v,0y] = [2,0,] = ik
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The basic commutation relations and the identities are
[AB,C] = A[B,C] + [A,C]B
[4,BC] = [A,B]C + B[A, C]
Where A, B & C are arbitrary operators.

The Adjoint of an Operator and Self Adjointness:
Let us consider the integral

fq; AW dt = (¢, A¥) £(213)

which involves two different functions ¢ and ¥ and reduces to the special casg When P =

denoted by AT(read as A dagger}, such that C\J
f &AW dr = f (ATd) W dr, or (& AW) —_gA’ff'cp L;f) - (2.14)

In means, the value of integral makes no dn‘ferenc whether A acts on ¥ or its
adjoint AT acts on the other wave function .
The properties of an adjoint operator are as follov;{s: A\ Y |
e The adjoint operators are additive &
(A+B) =4t g B*
e |If ¢ is a complex number then )
(cA)T =c*A *
i.e. in taking the adjoint, any complex number goes over into its complex conjugate.
e Further, since -

fcb (ATW)dr = f(AﬁP) ) .dr] = [f Y*Ad dr]* = f(ATQJ)* e .« (2387)

@M (= ..(2.18)
*It_._ofthe product of two operators A and B, is given by

"'*"""(1)'*'AB‘P e f(qu))* BY dt = J-(BTA“fq))* ¥dr «(2.19)

~X (AB)t = BtA? - (2.20)
Definition: An operator A is said to be self adjoint if its adjoint is equal to itself
' At =4 .. (2.21)

fq:*ABU dr = I(A@*tp dr, ie (§AY) = (4, ¥) . (2.22)

The product of two self-adjoint operators is hot necessarily self-adjoint.
If AT = A and Bt = B, then according to equation (2.16),

(AB)T = BA
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e Thus AB is self adjoint only if BA = AB, i.e. if A and B commute.
e However, the following two combinations are self adjoint
(AB + BA) and i(AB — BA) .. (2.24)
e The expectation value of a self-adjoint operator is real
(4) = {4y
Thus, self-adjoint operators are suitable for representing observable dynamical variables.
e It may be observed that ATA is always self-adjoint. Its expectation value is non-

negative in all states.

(ATA) = I wrATAW dr = f (AW (AP) dt =0 (225)

Any operator with this property is called positive property.
e Hence, the absolute square of the function A¥ is non-negative.
i.e |A¥|?#0
e Now, if {ATA) is to vanish, the integrand must vanish |dent|eally Thus
(ATA) =0 implies A¥ =0 '

The Eigen Value Problem: Degeneracy
For any operator 4, the eigen value eq uation canbe written as
Ady = ady Yy sl BT
If a function ¢, is such that the actios of the operator A on it has the 5|mple effect
of multiplying it by a constant factor ‘a’, then q)a is an eigen function of A belonging to the
eigen value ‘a’. The set of all eigen values oFA is called the eigen value spectrum of A. The
spectrum may be continuous, or dlscrete or partly continuous and partly discrete.
If there exist only one _gigen f\u_nctlon corresponds to a given eigen value, then the
eigen value is called non—degenér-&__t_e.""
If there are more tﬁ“aﬁ‘f;;-gﬁe eigen function for a given eigen value then it is called
degenerate.
For any deg' Y Tate eigen value, there is always an infinite numbers of eigen
function. ) ¢
Now c"'\'c'_insi'ifler,
) Ad, = ad,
prige axa} . (2.28)
Multlplymg above equations by C; and C, respectively and adding, we get
A(C1d, + Coxg) = a(Cidg + Coxa) - (2.29)
Hence, (Cid, + Cox,) is set of eigen function corresponding to a given value of
eigen value. This set forms a linear space. This space is called eigen space belonging to the
eigen value ‘a’ of A.
In general ¢q4q, Puo, $4r , the set of functions such that every eigen functions
belonging to ‘a’ can be expressed as a linear combination

Cidar + Codaz + v +Crr ..(2.30)
Where, C;, 5, C, are the suitable coefficients.
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Pat, Pazs v oo . Ogr form a set of basis functions which spans the linear space.

There is an infinite number of ways of choosing a basis. But the number r is
characteristic of the space. Hence, there is a definite number r of linearly independent. This
number is called the degree of degeneracy of the eigen value. We say that the eigen value is
r- fold degenerate.

Eigen Values and Eigen Functions of Self Adjoint Operators:
If the adjoint of an operator is itself an operator is called self adjoint operator

At =4
or
f ¢ A¥Y dr = f(ATq))* ¥Ydr
or

(b, 4¥) = (479, %)

Let A be a self-adjoint operator, and ¢, ¢ be two eigen functlon.s, then
Aby=ad,, Ady,=0a d,

The self-adjointness condition is

Substituting ¢ = ¢, and ¥ = ¢, in equatiop 2 35) we get

fqmqnudr—f(m}aa) o

We have eigen equation A, =a cba.\:_.
Now multiplying this equation by cl>;1 and taklng integral, we get

fq:aAqaadz—a [ #i e
Similarly, we have A cl)a__:,__.— ady,
[wapiar=a [0, d; ar

But A is self adjéin - (Rence from equations (2.37) & (2.38), we can write
| (@-a) [ @ dode=0
f dy, b, dt#0

z a= a’-*
" Thus, the eigen value of a self-adjoint operatar are real.
Now if] f{bf‘l $,dr =0
then a+a ..(241)
Hence, any two eigen functions belonging to unequal eigenvalues of a self-adjoint
operator are mutually orthogonal.

The operator may have both normalizable and non-normalizable eigen functions.
Thus the norm of ¢, may be either 1 or co. Therefore, we write
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| @ 0 =b@a)
Where §(a,a’) =0 fora+ a’
And  d&(a,a’)y=1 if ¢, isnormalizable
= 0 if ¢qis non —normalizable
6(a,a') is known as Kronecker delta function.
8(a,a") =8,
For an infinite norm of eigen functions, we write
6(a,a’) =6(a—a’)
Where, §(a — a') is the Dirac delta function. N AN
Equation (2.43) applies if ‘a’ belongs to the discrete part of the eigen value spectrum and
Equation (2.44) in the case of eigen values belonging to the continuum pe_;__[t___e,f_the_\._spectrum.

The Dirac Delta Function: ; &

Definition: The Dirac delta function is a certain function for' which it gives infinite
value at a particular point and zero everywhere, s T

If a function is a finite at a particular single pomt and zero for the other points then
its integral or area under the curve will be zero.

Now,

+oa

f 5 (x —x'") dx :1

6 (x— x’) o % £ X’ }
\ .‘.’ = x
The Dirac delta functlon IS also deflned through the equation

ff(x) 5 (" -—-x) dex=f(x"), a< ¥’ <b

Here, x is a can -muous variable. According to the definition, whatever the function
f(x) may be the delta function appearing in the integral picks out the value of f(x) at the
single point x ndhthe integral does not take account the behaviour of f(x) anywhere else.
" §(x—x")=0 forall x +x' ...(2.48)
At X = x the delta function cannot be finite at a single point and is zero
everywhere Its integral must vanish at a single point.
" From equation (2.47)
S(x—x")=o when x =x' ...(2.49)
Fig. (2.1) shows the behaviour of Dirac delta function §.(x — x") ase —» 0.
Here,

8:(x = x') = @me?y e exp [T TV ]
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In the l[imit € — 0 it satisfied equation (2. 49) and also the condition

f(‘)' (x — x’)dx =9 ..(2.51)

The three dimensional Dirac delta funct‘if is deflned by
6(}( X) ﬁ(x—x)c?(y y)é6(z—2z") ..(2.52)

Observables: Completeness and Normalization of Eigen Functions:

If a dynamical vanable i8 to be considered as observable, the operator representing
it must be self adjoin --req'uwement is that, the eigen functions of the operator should be
form of complete g t Any dynamical variable represented by a self-adjoint operator having
a complete set of elgen functions qualifies to be called an observable.

' a self- adjoint operator of some physical problem. Its eigen functions {¢,}
are sald to for?n a complete set if any arbitrary wave function ¥ of the system can be
e_;pa:_n\,_c:ied’ in to linear combination

w = Z Coby + f C,d, da .(2.53)

The linear combination includes summation over the discrete part of the eigen value
spectrum as well as integration over the continuous part. The assumption that a set {¢,} is
complete.

Let us evaluate the norm of ¥ taken to be 1 in terms of the coefficients C,. Now,
consider the case of an operator A whose eigen value spectrum is discrete, so that second
term of equation {2.53) will not be present. Using the orthonormality property of the ¢,
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-'-fW*‘P’ dr =1

s \z C zcacba‘ dr =1
'-Zi%caf;;r% dr =1
ch Ca8(a’,a) = 1
.-.ch 8(a,a) =1

Because, when a = a’ , we get a single value.
Now, there are two possibilities corresponding to
6(a,a)=1 or oo
But, §(a,a) = o must be rejected because it makes the equatlen (2 54) inconsistent.
Hence, we conclude that “the eigen functions belonging,_tt a_‘;;g;_rete eigen values are
normalizable”. o\
Setting 8(a,a’) = §,,+ in above equation, we_\gtﬁ?cjam

.. (2.55)

If we had a continuous instead of a dlscrete spectrum for ‘a’, integral would appear
in the place of summation in equation (2 54) and it becomes

.. (2.56)

The integral over a’ vanish, |f.§.(a'a ) is Kronecker delta function and hence equation
(2.56) would be |nconsmte\qt.,___Hen\_c_e, we have to take §(a,a’) as the Dirac delta function.
Therefore, “the eigen fugcﬁ'&hﬁl’bé’!onging to continuous eigen values are of infinite norm”.
Equation (2.56) now sim-pﬂi-fies to

e (2D
In geﬁ?er_el |f the spectrum of A has both discrete and continuous parts, we have

Z|cﬂt|2 5 f|c&|2 da =1 .. (2.58)

Hence we will write out all delta functions sums over eigenvalues if the spectrum
were discrete. Hence,

Y = Z Caby ..(2.59)

and f &h by dr = 8,40 . (2.60)

Whenever the spectrum has a continuous part, the summation signs are to be
understood as including integrations over the continuous part.
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Closure:

Any set of functions {¢,} which is orthonormal and complete has the important property of
closure

Z b (X) b (X)) = 8(X - X") .. (2.61)

This can be prove as follows:
Let

W= Cnbm

Multiplying on both the sides by ¢}, and integrating, we get

fcpwdr: Zcqu):;q)mdr

But, {d,} are orthonormal to each other.
Hence,

bn by dT = 5m,n ‘
' f q):l Wdr = Z C?n 57?1,?1

Jq:n‘f’dr

Substituting equation (2.64) in (2.62), we get “ N, .
N f i dr] b

) f[q:;l(ﬁ’)w*) 4t b (P)

s m

> [ 606 @196 v’

In this equation,

z G, 9 st bedi =2

v =y f S — )W) dr’
Z b (@) &, (F) = 8(F — ') is the closure of {¢,,,}

Hence, in general, the closure property of the set of function {¢,} can be written as,

z ba(X) (X)) = 6(X - X') - (2.67)
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Physical Interpretation of Eigen Values, Eigen Functions and Expansion
Coefficients:

Suppose A is the dynamical operator of any system, in which we are taking A
observations. Let ¥ be the state of the system. The set of eigen function of operator 4 be

{(ba}- Then,
Y= Z C,d, ... (2.68)

Where, (, is the coefficient.

Co = f ¢ ¥ dr , Col29)

For normalization of ¥

leaIZ -1

Here, we consider ¥ is normallzed LS

If ¥ is normalized, then state of the system be ¥, We get ‘different eigen values
corresponding to an operator A. Our observation may be a-ny one of them. The proper eigen
values can be find by taking the average of eigen values| of thﬁé state W,

The expectation values of dynamical operator A IS glven by

(4) = f ‘H..--A‘Hdr' '
oo ()
Zc C*fcbaAcbadr

zz:ca c:
PR
Zm 2 a

The function ¢, are orthonormal. Hence 8.4’ = 1 fora = a’. Equation (2.71) states
that (A) is the weighted average of the eigenvalues ‘a’ of A. The weight factors are the
positi.ve quantities |C,|* whose sum is unity.

The physical meaning of these observations is the following:

The result of any measurement A is one of its eigenvalues. The probability that a
particular value a comes out as the answer, when the system is in the state ¥ is given by
|C,]%. When repeated measurements of A are made on systems in the state ¥ the number
of times the answer a is obtained is expected to be proportional to |C,|%. The physical
significance of the eigenvalues of any observable is that they are the possible results of
measurements of the observable.
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The significance of the eigen functions can also be seen.
Suppose ¥ is itself be chosen to be one of the eigen functions of A say ¢, In these case

Co= [ @ badt = 2
Thus, €, = 1fora = a’, and zero for all other a.
Hence, the probability |C,|? for getting the answer a on measuring 4 is unity fora =

Thus, the eigen functions ¢, of A represent a state in which the observable 4 has a
definite value a’. Expressed differently, the uncertainty in the value of A is zero if thezsystem
is in one of the eigen values of A. \ AV

The interpretation of C, is the probability amplitude and |C,|? is an ;:orr;sbablllt\,;r
density. Hence, if we know the coefficients C, we can obtain the mformatlon about the
function ¥. 4

Therefore, constraints C,; as a function of , it is called ‘A- state i}“\zavie"'fbunction‘ just as

SU(X) is called the ‘coordinate space’ or ‘configuration space wave functlon We say that

and 'P(X) are different representation of the state. C, is r presented by column matrix as,

O

This matrix is called 4 — representatmn of the state ¥.

Momentum Eigen Functiohs}‘_ W.a've Functions in Momentum Space:
> Eigen value Equations.\
The one dimensional momentum operator is —lﬁ—

The elgen val."’:' equatlon is

Where, p is eigen value and ¢, is corresponding eigen function.
Now in quantum mechanics
p = hk
The "e-'réen function corresponding to k is ¢,
Hence, equation (2.73) becomes

d(bk_ 4
s _E(bk = d)k

d, .
. dx" = ik (Here,tz =-1)

_ ddy

=ik dx
b

Integrating this relation, we get
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Ind, =ikx+ C;
. (l)k = plkx . o0 — [ otkx
& wby =G .. (2.75)
Where, € is constant of integration. This constant can be determined by normalization.
» Normalization of Momentum Eigen Functions:
From equation (2.75), it is clear that momentum eigen function is non-normalizable. Then,
we have to use box- normalization or § — function normalization.
(a) Box-Normalization:
Let us consider particle is confined within a box of length L. Taking one end of the box as a

origin.

3 Jc]:nz(x)cl)k(x) dx = C? f g Hkx gIRX gy
0 0

J.(l);‘{(x)(l)k(x) dx = CzJ‘dx _ CZL
0

For normalization it should be 1.

Hence, equation (2.75) becomes

This is a box normallzed momentum eigen functions.
For three dimensional

(b) 6 — Flmctiqn Normalization:
For box norma__:_j_ ation following condition must be satisfied

. (2.78)

Where,n = +1,+2, ... ....
Equation (2.78) represents that the momentum of the particle is discrete. It is not
true. In actual practice, the momentum must be continuous. If the eigen values are
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continuum then we take § — function normalization. Hence, we must find a normalization

factor in such that

J &Lidy dx = 8(k — k')

But,
by = Ce™ and ¢, = Ce™ k'
+oo +oo
J G dy dx = C? J- e~ ik'x gikx gy

— oo
+coo

C2 f pl(=k)x oy

—co
+g

lim €2 f eilk=K")x q¢

g—co

ellk-k")g _ p-i(k-k")g
[ 2i I

sin(k — k’)gl

n this rr;ust be 5(k — k')
“Tsin(k — k") g = :
: [Wl B

. singx
= lim

. sing(k—k')

IR =)= k-5
ce, quation (2.80) can be written as
| sin(k — k") g )
I—ﬂ'(k =5 l =&k —k")
W 2nC: 8k -k =6(k-k")

22 =1

P 1

(2m) /2

Hence, in § — function normalization, the normalization constant is

lim 2C%

g—)DO

1
(2m)2

Dr P M Patel, V.P. & R.P.T.P. Science College, Vallabh Vidyanagar

- (2.79)




Hence, by the § — function normalized momentum eigen function is given by

¢k = 1 eltkx
2m)'/2
In three dimensions
1

€
(2m) /2
Closure Property of Momentum Eigen Functions:
(a) Box Normalized Eigen Functions:

o iK-X

T =

The closure property is

> rCOd(x) =80 = x)

n=-—co

But, k = z—nn and ¢ = 1 eikx
/) L y] k ﬁ

+co

Zm BB = Y T

Nn=—co

. +Zm $r ()i (x) mo‘zxz, .

n=—ca
This is a physical series. Its first comporent |s,:;

_—te &~ eI_N{x <)
and the ratio of two remalnlng terrns |s

MZTE

e i (N+1)(x-x")

2 !
_— e—lTR(x—x)
eLT(N+2)(x x")

”—izTnn[x %) Ty l o LN(x— x")

N—co L, [1 _ e-z%"(x—xf)]

[1 B e—iZT”(zNﬂ)(x—x’)]

TN+ (x-x") _  —ir(2N+1)(x-x")
LZTEN(x—x’) e—i%(2N+‘l)(x—x’) [e 5 & & ]

e — &

—i%(x—x’) [et%(x—x’) —i%(_x—x’)]
sin%(ZN + 1D(x — x’)]

[sin% (x — x’)]

ei%(2N+1)(x—x’) _ e—i%(2N+1)(x—x')] [

_ [51n(2N+ D(x —x") ]
~ NSel [sin(x —x )E]
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P i 6 T ! —
=g (z (’C‘“) -
=6(x—x")

Y i) = 8(x - x)

(b) & — Function Normalized Eigen Functions:
We know that

(b 1 ikx
= ———e
© T em'

Y DD Gx) = ) el

But, k is continuum, hence above equation becomes

| -
Zcpkcx) ) = o f e(xx) g

1 g
= 21 &5(x — x.’\)

2 e ) = s -x) S
k 2 % 1

% y + oo
N\ bBecause §(x) = — f e * dk
I
In three dimensions

2 Oz () &3 @) =\9( ..(291)
k 17 " (M
Now, momentum ef‘geﬁ;‘fuhctions are orthogonal to each other and its norm is unity.

Hence, we get a completéset of the function {d, ()}

W) = Z C(R) b,(7)

' L k
ltiplying on both the sides by &, (7) and integrating, we get

f'q;;{,(?) ¥ (@) d3r = Z c(k) fcpg, by d3r

K

> c(®) s(k- )

—

k
fz c(R) 6(k—F) d*k  (becausek = k')
7
= c(k)
w (k) = f &5 () Y dir ..(2.93)

Now,
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-
—ikT

C(k) = —3/2f lp(f’) e_ﬂé.r’ d3r

For continuous distribution, equation (2.92) can be written as

() = f CR) &40 dir
_ 1 ik-#
q)k - (2}_[)3}2 e

o1 Y Sk T g3
RIGE T JC(k) et* T @i

(2.95) are Fourier transform to each other
If we putp = Ak by k , then we get

Equations (2.94) &

1 s
Y = —— f C@F) el @D/ gip
(21th) /2

. 1 »
C(P) —m f’l”(?”

Equation {2.97) shows that if ¥(7#) represent the state of the system of observable

momentum p then probability to get the momenium 7'is |C(P)|?. It is given by equation
(2.98). ¥ (7) is the Fourier transform of C(k)

and

The expectation value of any functlcm on momentum is

(@) = [1C@PEE @

C(p) may be called the, mm'._ﬁﬁ:entum space wave function. It gives probability
amplitude and | C(B)|? the pigbability density

C(P) contains the sameinformation as the configuration space wave function ¥ (7).

In momentum space) the dynamical variables would be represented by operator
which act on C(p) S\ Qud

and momentum are represented by
Xop = iRV .. (2.100)
and Pop = D .. (2.101)
> Eigen value equation of position operator in momentum space
The eigen equation of position operator in momentum space is given by

Fop C(B) =7 C(B) -(2.102)

~ IhV; C(P) =7 C(p) ..(2.103)
C(p) = —3/ f Y(#) e iPD/h g3y

. (2.104)
(2mh)™/2
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“ iRV l f‘P(r) g~ i@/ d%rl = (if) — 5 [

=7 C(p)
~ iRV C(P) =7 C(p) i (2:105)
» Example: Suppose particle is represented by the wave function

flp(r) B—L(p )/ h d?

(2mh) /2 (2mh) /2

-1/ _,2
Y(x) = (\/E) Xze /2 then find the probability of wave vector k.

—ikx
Clk) = @ Tf)l/ f‘P’(r) e dx
1

T 2o

+o0

N P

-0
+ oo

_ 1 1 J’ o R d}c-:
2m) 2 (m)Ya r N\

— oo

1 1
= e
2m) 72 (m)'/a
e_kz/z

- (2m) /2 ()4

This is the probabil "a.'__:_i_ﬁa\"/e.vector k.
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Question Bank

Multiple choice questions:
For the wave functions @ and 1Y and operator A the shorter notation of the integral
[¢*Apdr =
(@ (&, ¥) (b) (¢", AY)
(c) (¢, AY) (d) (A, ¥)
For adjoint operator A, ( ¢, Ay )=
(a) (A9, ¥) (b) (¢ AY)
(€ (¢ AY) (d) (Ag¢, ¥)
For the adjoint of the product of two operators Aand B, { AB)'=
(a) B*A* (b) AB
(c) A'B' (d)y 1 N N
If there exist only one eigen function corresponding to a given elgen value then the
eigen value is called ™\
(a) Non degenerate (b) Degeneraté“‘
(c) Discrete (d) Contigudéh
If there exist more than one eigen function correspondlng :0-.._a glven eigen value, then
the eigen value is called £ '
(a) Non degenerate v':"B__ég_.eﬁerate
(c) discrete ((d\._Qontinuum
The set of eigen function (C,0, + C,1,) forms space
(a) Configuration (b) eigen
(¢) Phase * (d) Imaginary
If Ais an operator and A' is an adjomt Qperator of A then (A) =
(a) A (b) A"
(c) A ' (d) 1
If Aand B are non- commutatlve self adjoint operators then ( AB)' =
(a) BA (b) AB
( C) At BT .\ & (d) 1
Eigen values of a self adjomt operator is
(a) always 0 w MY (b) Infinite
{(c) Real, (d) Imaginary
For any, op“eratar A and a wave function ¢, if A¢p, = a¢p, then a is called
(a) \Eﬁ,l_____ge__n\_functlon (b) Eigen value
(e, Probability density (d) Probability amplitude
___Aﬁy.jjcwo'eigen functions belonging to unegual eigen values of a self adjoint operator

L
; .:___{a') Non orthogonal (b) Parallel

(c) Orthogonal (d) Imaginary

(12) If 8, is Kronecker delta function then &,,,, = 0 when
(a) m=n (b) m>n
c) m<n (d) m=#*n

(13) If &y, p is Kronecker delta function then 6., ,, = 1 when
(a) m=n (b) m>n
c) m<n (d) m#*n

(14) An operator representing observable dynamical variable has
(a) alwaysO (b} Infinite
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(16)

(17)

(18)

(c) Real (d) Imaginary
Position operator in a momentum space is given by 7, =
(a) inv, (b) ihrg,
(c) (6 g @ ) (d) 2mc

949,409 7
7 T T ag 72

If A & B are a canonically conjugate pair of operator, then [4, B] =

(a) Ih/2 (b} th

(c) h (d) 2inh

The value of constant of integration for Box normalized momentum eigen funcj;_j_on is

(a) 1/ (2VL) (b) 1/VL

(¢) 1/+vn (d) 1/+V2n &
The value of constant of integration for & function normalized momentum elgen
function is ~\ 3\

(@) 1/(2v0L) b) 1/vVL, N\~

() 1/Vn (d) 1/veml ,

Short Questions:

1.

State the postulates of quantum mechanics

Explain adjoint and self adjoint operator

Write the properties of an adjoint operator

Define degenerate and non-degenerate elgen Values

Explain briefly Dirac delta function A\

What is observable? Also state expansuon paostulate

Show that eigen value of a self adJOIht operator is real

Show that if ¢, is eigen functlon Q‘F arroperator A and an operator B is commuting
with the operator A then (,ba 15 also eigen function of the operator B

Obtain eigen function m__momentum space

Long Questions:

Ly

2.
3.
4

Discuss the adjomt of, operator with their properties

Discuss the elgen ‘value problem for degeneracy

Define selfadjemt operator and describe its eigen values and eigen functions
Show that any two eigen functions belonging to distinct (unequal) eigen values of a
selfadjolnt operator are mutually orthogonal

*Show that the eigen function belonging to discrete eigen values are normalizable

and the eigen functions belonging to continuous eigen values are of infinite norm.

""'.:"'-"I'Dlscuss the physical interpretation of eigen values, eigen functions and expansion

v coefficients

Write a detailed note on Dirac delta function

Discuss the completeness and normalization of eigen functions for observables

Derive eigen function in momentum space and normalized it by box normalization
. Derive eigen function in momentum space and normalized it by & function

normalization method
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