B.Sc. (Semester - 6)

Subject: Physics

Course: US06CPHY21

Quantum Mechanics

UNIT- I Stationary States and Energy Spectra

Stationary States and Energy Spectra:

The state of a quantum mechanical system is specified by giving its wave function Ψ . If a particle moving in a static or time-independent potential, then the solution of the wave equation are describe as a stationary states. In these states, the position probability density $|\Psi|^2$ at every point \vec{X} in space remains independent of time.

When a particle is described by such a wave function its energy has a perfectly definite value. The energy spectrum i.e. the set of energy values associated with the various stationary states is discrete. These energy states are described as a energy spectra.

The Time-Independent Schrodinger Equation:

Let us consider a particle moving in a time-independent potential V(x). By the method of separation of variable, we can write the wave function

$$\Psi(\vec{X},t) = u(\vec{X}) f(t) \qquad \dots (1.1)$$

Substituting this value in

this value in
$$i\hbar \, \frac{\partial \Psi(\vec{X},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{X},t) + V(\vec{X},t) \Psi(\vec{X},t)$$

$$i\hbar \, \frac{\partial}{\partial t} \big[u(\vec{X}) \, f(t) \big] = -\frac{\hbar^2}{2m} \nabla^2 \big[u(\vec{X}) \, f(t) \big] + V(\vec{X},t) \big[u(\vec{X}) \, f(t) \big]$$

Dividing throughout by
$$u(\vec{X}) f(t)$$
, we get
$$\frac{1}{f} i\hbar \frac{df}{dt} = -\frac{\hbar^2}{2m} \frac{\nabla^2 u}{u} + V(\vec{X}, t) \qquad ... (1.2)$$

The R.H.S is independent of t and L.H.S is independent of \vec{X} . Their equality implies that both the sides must be equal to a constant.

$$\therefore \frac{1}{f} i\hbar \frac{df}{dt} = E$$

$$\therefore i\hbar \frac{df(t)}{dt} = E(t) \qquad \dots (1.3)$$

$$\left[-\frac{\hbar^2}{2m} \frac{\nabla^2 u}{u} + V(\vec{X}) \right] = E$$

$$\therefore \left[-\frac{\hbar^2}{2m} \frac{\nabla^2 u}{u} + V(\vec{X}) \right] u(\vec{X}) = Eu(\vec{X}) \qquad \dots (1.4)$$

This is time independent Schrodinger equation.

The solution of equation (1.3) is

$$\frac{df}{f} = \frac{E}{i\hbar} dt$$

Integration gives,

$$log f = \frac{E}{i\hbar} t = \frac{-iEt}{\hbar}$$

$$\therefore f = exp\left(\frac{-iEt}{\hbar}\right) \qquad \dots (1.5)$$

The solution of equation (1.4) is depends on the value of E. Hence we can write as $u_E(\vec{X})$.

Hence, equation (1.1) becomes

$$\Psi(\vec{X},t) = u_E(\vec{X}) e^{-iEt/\hbar} \qquad \dots (1.6)$$

The wave function Ψ would be vanish as $t \to \infty$ or $-\infty$. The value of E has to be real. Hence, the probability density becomes

$$\left|\Psi(\vec{X},t)\right|^2 = \left|u_E(\vec{X})\right|^2 \qquad ...(1.7)$$

Therefore, the probability density is time independent. Expectation value must also be time independent.

Equation (1.4) states that the action of the Hamiltonian operator of the particle on the wave function $u_E(\vec{X})$ is simplify to reproduce the same wave function multiplied by the constant $E.\ u_E(\vec{X})$ is called *energy eigen function* and E is called *energy eigen value*. The energy eigen values refer as energy levels of the system.

A Particle in a Square Well Potential:

Consider a particle whose potential energy function has the shape of well with vertical sides defined by

$$\begin{array}{llll} V(x) = 0 & for \ x < -a & (Region - I) \\ V(x) = -V_0 & for \ -a < x < a & (Region - II) \\ V(x) = 0 & for \ x > a & (Region - III) \end{array} \right\} \quad \dots (1.8)$$

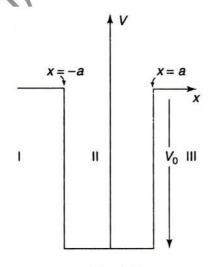


Fig: 1.1

The kinetic energy (E-V) can never be negative. Since, V=0 for |x|>a, (E-V) can be positive in this region if E>0. Hence, any particle with E<0 can not enter in the

region I and III. It will stay within the potential well between x=a and x=-a. Hence, the particle bound by the potential.

The time independent Schrodinger equation for two regions becomes

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dx^2} = Eu, \quad for \ |x| > a \qquad ... (1.9)$$

And

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dx^2} - V_0u = Eu, \quad for \, |x| < a \qquad ...(1.10)$$

Bound States in a Square Well: (E < 0)</p>

(a) Admissible solutions of wave equation:

For E < 0, we write equations (1.9) & (1.10) as follows:

$$\frac{d^{2}u}{dx^{2}} + \frac{2mE}{\hbar^{2}}u = 0, \quad for \ |x| > a \quad (Region: I \& III) \qquad ...(1.11)$$

$$and \qquad \frac{d^{2}u}{dx^{2}} + \frac{2m}{\hbar^{2}}V_{0}u + \frac{2mE}{\hbar^{2}}u = 0$$

$$\therefore \frac{d^{2}u}{dx^{2}} + \frac{2m(E + V_{0})}{\hbar^{2}}u = 0, \quad for \ |x| < a \quad (Region: II) \qquad ...(1.12)$$

Equations (1.11) & (1.12) can be written as

$$\frac{d^{2}u}{dx^{2}} - \alpha^{2}u = 0, \quad for \ |x| > a \ (Region: I \& III) \qquad \dots (1.13)$$

$$d^{2}u \qquad \qquad \dots$$

 $and \qquad \frac{d^2u}{dx^2} + \beta^2u = 0, \qquad for \ |x| < a \ \ (Region:II)$ Where $-\alpha^2 = \frac{2mE}{\hbar^2}$ and $\beta^2 = \frac{2m(E+V_0)}{\hbar^2}$ are positive constants.

The general solution of equation (1.14) is

$$u^{II}(x) = A\cos\beta x + B\sin\beta x \qquad ... (1.15)$$

Where A and B are constants.

This is the solution in region- 11.

The general solution of equation (1.13) in the region- I & III is the linear combination of $e^{\alpha x}$ and $e^{-\alpha x}$.

For region –
$$I: -\infty < x < a$$

In this region, as $x \to -\infty$, then $e^{-\alpha x} \to \infty$.

Therefore, the admissible solution in region- I must be of the form

$$u^I(x) = C e^{\alpha x} \qquad \dots (1.16)$$

For region – III: $a < x < \infty$

In this region, as $x \to \infty$, then $e^{\alpha x} \to \infty$.

Therefore, the admissible solution in region- III must be of the form

$$u^{III}(x) = D e^{-\alpha x}$$
 ... (1.17)

C and D are constants.

The solution u(x) and its first derivative $\frac{du}{dx}$ must be continuous. At the point x=-a where regions I & III meet, we should have

$$u^{I} = u^{II}$$
 and $\frac{du^{I}}{dx} = \frac{du^{II}}{dx}$ at $(x = -a)$
 $\therefore C e^{-\alpha a} = A \cos \beta a - B \sin \beta a$... (1.18)

And

$$-C e^{-\alpha a} \alpha = -A \sin\beta a \beta - B \cos\beta a \beta$$

$$\therefore C \alpha e^{-\alpha a} = A\beta \sin\beta a + B\beta \cos\beta a \qquad \dots (1.19)$$

Similarly, at x = a

$$u^{II}=u^{III}$$
 and $\frac{du^{II}}{dx}=\frac{du^{III}}{dx}$
 $D\ e^{-\alpha a}=A\ cos\beta a+B\ sin\beta a$... (1.20)

and
$$-D\alpha e^{-\alpha a} = -A\beta \sin\beta a + B\beta \cos\beta a \qquad \dots (1.21)$$

Adding equations (1.18) & (1.20), we get

$$(C+D)e^{-\alpha a} = 2A\cos\beta a \qquad ...(1.22)$$

Adding equations (1.19) & (1.21), we get

$$(C-D)\alpha e^{-\alpha a} = 2B\beta \cos\beta a \tag{1.23}$$

Subtracting equations (1.18) & (1.20), we get

$$(C-D)e^{-\alpha a} = -2B \sin\beta a$$

$$\therefore -(C-D)e^{-\alpha a} = 2B \sin\beta a \qquad ... (1.24)$$

Subtracting equations (1.19) & (1.21), we get

$$(C+D)\alpha e^{-\alpha a} = 2A\beta \sin\beta a \qquad \dots (1.25)$$

Now, dividing equation (1.25) by (1.22), we get

$$\frac{(C+D)\alpha e^{-\alpha a}}{(C+D)e^{-\alpha a}} = \frac{2A\beta \sin\beta a}{2A\cos\beta a}$$

$$\therefore \alpha = \beta \tan\beta a \qquad ... (1.26)$$

unless
$$A = 0$$
 and $C + D = 0$ i.e. $C = -D$... (1.27)

Now, dividing equation (1.23) by (1.24), we get

$$\frac{(C-D)\alpha e^{-\alpha a}}{-(C-D)e^{-\alpha a}} = \frac{2B\beta \cos\beta a}{2B\sin\beta a}$$

$$\therefore -\alpha = \beta \cot\beta a$$

$$\therefore \alpha = -\beta \cot\beta a \qquad \dots (1.28)$$

unless
$$B = 0$$
 and $C - D = 0$ i.e. $C = D$... (1.29)

Hence, the combination of equations (1.26) & (1.29) and (1.28) & (1.27) becomes the possible solutions.

There exist two types of admissible solutions.

(1) When, B=0 and C=D, then from equation (1.22), we get $D=A\,e^{\alpha a}cos\beta a\qquad \qquad ...\,(1.30)$

(2) When, A = 0 and C = -D, then from equation (1.24), we get

$$2De^{-\alpha a} = 2B \sin\beta a$$

$$D = B e^{\alpha a} \sin\beta a \qquad ... (1.31)$$

Hence, we get two set of solutions

$$\alpha = \beta \tan \beta a
C = D
B = 0
D = A e^{\alpha a} \cos \beta a$$
... (1.32)

And

$$\alpha = -\beta \cot \beta a
C = -D
A = 0
D = B e^{\alpha a} \sin \beta a$$
... (1.33)

(b) The Energy Eigen Values: (Discrete Spectrum)

Both the types of solutions exist only for certain discrete values of the energy parameter ${\it E}$. We have

$$-\alpha^{2} = \frac{2mE}{\hbar^{2}} \quad and \quad \beta^{2} = \frac{2m(E + V_{0})}{\hbar^{2}}$$

$$\therefore \quad \alpha^{2} + \beta^{2} = -\frac{2mE}{\hbar^{2}} + \frac{2mE}{\hbar^{2}} + \frac{2mV_{0}}{\hbar^{2}}$$

$$\therefore \quad \alpha^{2} + \beta^{2} = \frac{2mV_{0}}{\hbar^{2}}$$

Multiplying by a^2 on both the sides ,we get

$$(\alpha^{2} + \beta^{2})a^{2} = \frac{2mV_{0}a^{2}}{\hbar^{2}}$$

$$\therefore (\alpha^{2} + \beta^{2})a^{2} = \frac{V_{0}}{\hbar^{2}/2ma^{2}}$$

$$\therefore (\alpha^{2} + \beta^{2})a^{2} = \frac{V_{0}}{\Delta} \qquad ... (1.34)$$

Where, $\Delta={\hbar^2/_{2ma^2}}$ is a natural unit of energy as follow.

$$\Delta = \frac{\hbar^2}{2ma^2} = \frac{(m^2 \, kg/s)^2}{kg. \, m^2} = \frac{m^4 kg^2}{kg. \, m^2 s^2} = \frac{kg \, m^2}{s^2} = Joul$$

In equation (1.34) $\frac{V_0}{\Lambda}$ is a measure of strength of the potential.

Since α and β are positive constants. Hence, $\alpha/\beta=tan\beta a$ must be positive and hence values of βa lying in the following intervals are admissible.

$$2r\frac{\pi}{2} \le \beta a \le (2r+1)\frac{\pi}{2}$$
 ... (1.35)
Here, $(r = 0,1,2,...)$

Now, substituting $\alpha = \beta \tan \beta a$ in equation (1.34), we get

$$(\beta^{2} \tan^{2}\beta a + \beta^{2})a^{2} = \frac{V_{0}}{\Delta}$$

$$\therefore \beta^{2}a^{2}(\tan^{2}\beta a + 1) = \frac{V_{0}}{\Delta}$$

$$\therefore \beta^{2}a^{2} \sec^{2}\beta a = \frac{V_{0}}{\Delta}$$

$$\therefore \sec^{2}\beta a = \frac{V_{0}}{\beta^{2}a^{2}\Delta} \qquad ...(1.36)$$

$$or \quad |\cos\beta a| = \left(\frac{\Delta}{V_{0}}\right)^{1/2}\beta a \qquad ...(1.37)$$

The modulus sign arises because the left hand side of the equation is known to be positive. Similarly, substituting $\alpha = -\beta \cot \beta a$ in equation (1.34), we get

$$(\beta^2 \cot^2 \beta a + \beta^2) a^2 = \frac{V_0}{\Delta}$$

$$\therefore \beta^2 a^2 (\cot^2 \beta a + 1) = \frac{V_0}{\Delta}$$

$$\therefore \csc^2 \beta a = \frac{V_0}{\beta^2 a^2 \Delta} \qquad \dots (1.38)$$

or
$$|\sin\beta a| = \left(\frac{\Delta}{V_0}\right)^{1/2} \beta a$$
 ... (1.39)

Here also α and β are positive, but $\alpha/\beta=\cot\beta a$, must be negative. Hence value of βa lying in the intervals

$$(2r-1)\frac{\pi}{2} \le \beta a \le 2r\frac{\pi}{2}$$
 ... (1.40)
Here, $(r = 1, 2, ...)$

Equations (1.37) & (1.39) can be satisfied only by certain specific discrete values of β , which can be found graphically. These values called β_n are determined by the intersections of the straight line $\left(\frac{\Delta}{V_0}\right)^{1/2}\beta a$ with the curves for $|\cos\beta a|$ and $|\sin\beta a|$ are shown as solid lines and dashed line respectively in fig.(1.2). The parts to be ignored are indicated by dotted lines.

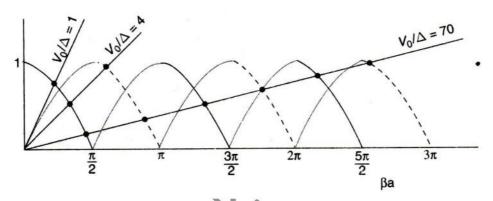


Fig: 1.2

If the intersections occur at $\beta=\beta_n$ $(n=0,1,2\dots)$ the corresponding allowed values of the energy are obtained as follows.

We know that,

$$\beta^2 = \frac{2m(E + V_0)}{\hbar^2}$$

For all possible values of n, we can write

$$(\beta_n)^2 = \frac{2m(E_n + V_0)}{\hbar^2}$$

$$\therefore E_n + V_0 = \frac{(\beta_n)^2 \hbar^2}{2m}$$

$$\therefore E_n + V_0 = \frac{(\beta_n)^2 \hbar^2}{2m} \times \frac{a^2}{a^2}$$

$$\therefore E_n + V_0 = \frac{(\beta_n a)^2 \hbar^2}{2ma^2}$$

$$\therefore E_n + V_0 = (\beta_n a)^2 \times \frac{\hbar^2}{2ma^2} = (\beta_n a)^2 \Delta$$

$$\therefore E_n = (\beta_n a)^2 \Delta - V_0$$

$$\therefore E_n = \left[(\beta_n a)^2 \frac{\Delta}{V_0} - 1 \right] V_0 \qquad \dots (1.41)$$

From fig.(1.2), if $\left(\frac{\Delta}{V_0}\right)^{1/2}\beta a \to 1$ in the interval

$$\frac{1}{2}\pi N \le \beta a \le \frac{1}{2}\pi (N+1)$$

then there are (N+1) intersections. In other words, the number of discrete energy level is (N+1) if

$$\frac{1}{2}\pi N \left(\frac{\Delta}{V_0}\right)^{1/2} \le 1 \le \frac{1}{2}\pi (N+1) \left(\frac{\Delta}{V_0}\right)^{1/2}$$
or
$$N \le \frac{2}{\pi} \left(\frac{V_0}{\Delta}\right)^{1/2} < (N+1) \qquad \dots (1.42)$$

Hence, there exists at least one bound state, however weak the potential may be._

(c) The Energy Eigen Functions; Parity:

We have the eigen functions

$$u^{I}(x) = C e^{\alpha x}$$
, $x < -a$... (1.43)

$$u^{II}(x) = A\cos\beta x + B\sin\beta x$$
, $-a < x < q$... (1.44)

$$u^{III}(x) = D e^{-\alpha x}, \qquad x > a \qquad ...(1.45)$$

Using equation (1.32), we get

$$u^{I}(x) = A e^{\alpha a} \cos \beta a e^{\alpha x} , \qquad x < -a \qquad \dots (1.46)$$

$$u^{II}(x) = A \cos \beta x$$
, $-a < x < q$... (1.47)

$$u^{III}(x) = A e^{\alpha a} \cos \beta a e^{-\alpha x}, \qquad x > a \qquad \dots (1.48)$$

If we represents values of $lpha=lpha_n$ and $eta=eta_n$ then above equations becomes

$$u_n^{I}(x) = A e^{\alpha_n a} \cos \beta_n a e^{\alpha_n x} \qquad x < -a \qquad \dots (1.49)$$

$$u_n{}^I(x) = A e^{\alpha_n a} \cos \beta_n a e^{\alpha_n x}$$
, $x < -a$... (1.49)
 $u_n{}^I(x) = A \cos \beta_n x$, $-a < x < q$... (1.50)

$$u_n^{II}(x) = A \cos \beta_n x$$
, $-a < x < q$... (1.50)
 $u_n^{III}(x) = A e^{\alpha_n a} \cos \beta_n a e^{-\alpha_n x}$, $x > a$... (1.51)

$$n = 0,1,2,...$$

The nature of such functions is illustrated graphically in fig.(1.3). $u_n(x)$ is symmetric about the origin.

$$u_n(x) = u_n(-x)$$
 ... (1.52)

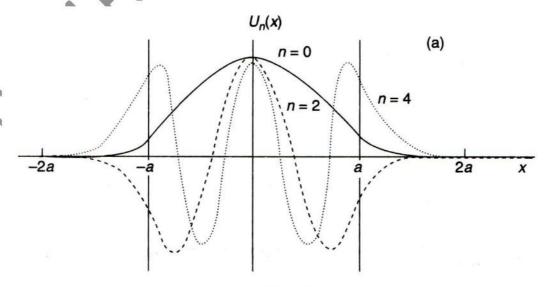
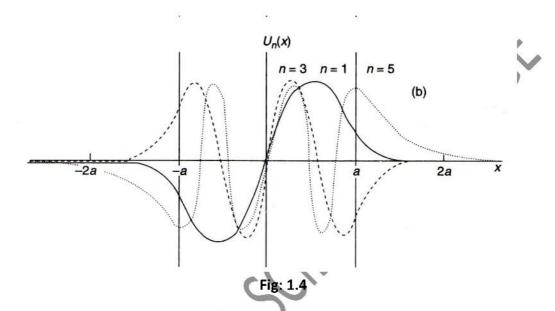


Fig: 1.3


Any wave function which has this symmetry property is said to be of even parity.

The eigen function corresponding to n = 1,3,5,... are characterized by equation (1.33). We have

$$u_n^{I}(x) = -(B e^{\alpha_n a} \sin \beta_n a) e^{\alpha_n x}, \quad x < -a \quad ... (1.53)$$

$$u_n^{II}(x) = B \sin \beta_n x$$
, $-a < x < q$... (1.54)

$$\begin{array}{lll} u_n{}^I(x) = -(B \ e^{\alpha_n a} sin \beta_n a \) e^{\alpha_n x} \ , & x < -a & ... (1.53) \\ u_n{}^{II}(x) = B \ sin \beta_n x \ , & -a < x < q & ... (1.54) \\ u_n{}^{III}(x) = (B \ e^{\alpha_n a} sin \beta_n a) \ e^{-\alpha_n x}, & x > a & ... (1.55) \end{array}$$

These functions are illustrated in fig.(1.4). They are anti-symmetric with respect to the origin.

i.e.
$$u_n(x) = -u_n(-x)$$
 ... (1.56)

Any wave function which has this property of anti-symmetric is said to be of odd parity.

Penetration into Classically Forbidden Regions:

We know that a classical particle of energy E < 0 can stay only in region-II and cannot at all entre region-I and III. However, the quantum mechanical wave functions $u_n(x)$ have non vanishing values in both these classically forbidden regions. Hence, there is probability of finding the particle in regions I & III. In this regions $|\Psi|^2 \to 0$, hence for a large value of x, the $probability \rightarrow 0$. Therefore, the particle cannot escape to infinity distance, it stay bound to the potential.

The Square Well: Non-Localized States (E > 0):

In this case, the Schrodinger equations can be written as,

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dx^2} = Eu, \text{ for } x < -a \text{ and } x > a \text{ (Region: I & III)} \qquad ...(1.57)$$

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dx^2} - V_0u = Eu, \text{ for } x < -a \text{ and } x > a \text{ (Region: II)} \qquad \dots (1.58)$$

When, E > 0, $\frac{2mE}{\hbar^2}$ is positive.

Suppose
$$\frac{2mE}{\hbar^2} = k^2$$
 and $\frac{2m(E+V_0)}{\hbar^2} = \beta^2$. Hence equations (1.57) & (1.58) becomes
$$\frac{d^2u}{dx^2} + k^2u = 0, \quad for \ x < -a \ and \ x > a \ (\textit{Region: I & III}) \qquad ... (1.59)$$

$$\frac{d^2u}{dx^2} + \beta^2u = 0, \quad for \ x < -a \ and \ x > a \ (\textit{Region: II}) \qquad ... (1.60)$$

The general solution of equations (1.59) & (1.60) are

$$u^{I} = C_{+} e^{ikx} + C_{-} e^{-ikx}$$
, $x < -a$... (1.61)

$$u^{III} = D_{+} e^{ikx} + D_{-} e^{-ikx}$$
, $x > a$... (1.62)

and
$$u^{II} = A_{+} e^{i\beta x} + A_{-} e^{-i\beta x}$$
, $-a < x < a$... (1.63)

Physical Interpretation:

In equation (1.58) the plane wave $C_+ e^{ikx}$ represent the motion of particle from $x=-\infty$ to x=-a i.e. towards right hand side and plane wave $C_- e^{-ikx}$ represent the motion from x=-a to $x=-\infty$ i.e. to L.H.S. Similarly $D_+ e^{ikx}$ and $D_- e^{-ikx}$ represents the wave travel towards R.H.S and L.H.S from x=+a to $x=+\infty$ respectively. Similarly, we can interpreted equation (1.63) between the limits x=-a to x=+a.

Boundary Conditions:

The potential $V_0=0$ when x<-a and x>a. Here, E>0. Hence, the particle has a positive kinetic energy. The particle cannot stay in the region. Therefore, the boundary conditions

$$\lim_{x \to -\infty} u^{I}(x) \to 0 \quad and \quad \lim_{x \to \infty} u^{III}(x) \to 0$$

are not satisfied. A particle with the wave functions (1.61), (1.62) & (1.63) is not localized. It is not confined to any finite region of space. Since $|u(x)|^2$ remains nonzero even when $x \to \pm \infty$. Such wave functions are not normalizable.

The solution and its first derivatives must be continuous at x=-a and x=+a. Here, there is not any restrictions on k or β . Hence, any energy E>0 is an eigen value. When E>0, the continuity conditions gives four equations but they involve six unknowns A_{\pm} , C_{\pm} , D_{\pm} . Since, the number of equations is less than the number of unknowns. An infinite number of solutions exist. Thus, the energy eigen values from a continuous (not a discrete) set. Hence, the energy spectrum for E>0 is a continuum.

The probability of reflection is given by

$$R = \left[1 + \frac{4E (E + V_0)}{V_0^2 sin^2 \left\{2\sqrt{\frac{(E + V_0)}{\Delta}}\right\}}\right]^{-1} \dots (1.64)$$

This expression is shown graphically in fig.(1.5).

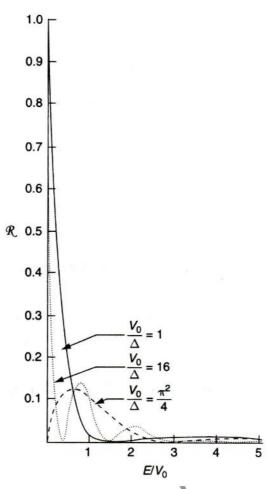


Fig: 1.5

For very low energies $E \to 0$, the reflection is almost total. As $\binom{E}{V_0}$ increases, R oscillates between zero and $\left[1+\frac{4E(E+V_0)}{{V_0}^2}\right]^{-1}$. This bound depends only on $\binom{E}{V_0}$, not the width of the potential well.

- The frequency of oscillation depends on the parameter $\Delta=\frac{\hbar^2}{2ma^2}$, i.e. depend on width of the potential well.
- The complete transmission occurs (R = 0) when the energy is such that

$$\left\{2\frac{\sqrt{(E+V_0)}}{\Delta}\right\} = \sin(2\beta a) = 0$$

The Square Potential Barrier:

(a) Quantum Mechanical Tunneling:

Let us consider a potential barrier as shown in fig.(1.6). There is a effect of the penetration of the wave function into classically forbidden regions. It means there is an ability of particles to *tunnel* through barriers of height V_0 .

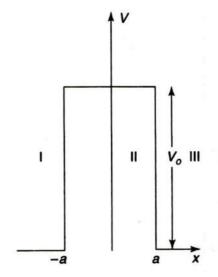


Fig: 1.6

The potential of the square well barrier is given by

$$V_0 = \begin{cases} 0, & x < -a \\ V_0, & -a < x < a \\ 0, & x > a \end{cases} \dots (1.65)$$

The Schrodinger equations for region I and III becomes

$$-\frac{\hbar^2}{2m}\frac{d^2u}{dx^2} = Eu, \quad for |x| > a$$

$$\therefore \frac{d^2u}{dx^2} + \frac{2mE}{\hbar^2}u = 0$$

$$\therefore \frac{d^2u}{dx^2} + \alpha^2u = 0 \qquad \dots (1.66)$$

Where, $\alpha^2 = \frac{2mE}{\hbar^2}$

The Schrodinger equation in region II is given by

$$\frac{\hbar^2}{2m} \frac{d^2 u}{dx^2} + V_0 u = E u, \quad for \, |x| < a$$

$$\therefore \frac{d^2 u}{dx^2} + \frac{2m}{\hbar^2} (E - V_0) u = 0$$

$$\therefore \frac{d^2 u}{dx^2} - \beta^2 u = 0 \qquad \dots (1.67)$$

Where, $\beta^2 = -\frac{2m}{\hbar^2}(E - V_0)$

The solutions of equations (1.66) are

$$u^{I} = A_{+} e^{i\alpha x} + A_{-} e^{-i\alpha x}$$
, $x < -a$... (1.68)

and
$$u^{III} = C_{+} e^{i\alpha x} + C_{-} e^{-i\alpha x}$$
, $x > a$... (1.69)

 $A_+, A_-, C_+ \& C_-$ are constants.

- $ightharpoonup A_+ e^{i\alpha x}$ represent the particles are incident on the barrier only from the left side with positive momentum, and
- $ightharpoonup A_- \, e^{-i\alpha x}$ represent the particles moving with momentum $-\hbar k$ away from the barrier i.e. the particles reflected by the barrier.

$$\therefore$$
 Amplitude for reflection = $\begin{vmatrix} A_{-} \\ A_{-} \end{vmatrix}$

$$\therefore Reflection probability = \left| \frac{A_{-}}{A_{+}} \right|^{2} \qquad \dots (1.70)$$

In region III , the particles cannot moving to left, Hence $C_-=0$

$$u^{III} = C_+ e^{i\alpha x} \qquad \dots (1.71)$$

This wave function represent that particles moving to the right, which could come only by tunneling through the barrier from region-I.

$$\therefore The \ amplitude \ for \ tuneeling = \left|\frac{C_+}{A_+}\right|$$

$$\therefore Tunneling \ probability = \left| \frac{C_+}{A_+} \right|^2 \qquad \dots (1.72)$$

The solution of equation (1.66) in region II is

$$u^{II} = B_{+} e^{\beta x} + B_{-} e^{-\beta x}$$
 ... (1.7)

Now, the continuity conditions at x = -a are

$$u^{I} = u^{II}$$
 and $\frac{du^{I}}{dx} = \frac{du^{II}}{dx}$

Hence, using continuity condition, we have

$$A_{+} e^{-i\alpha a} + A_{-} e^{i\alpha a} = B_{+} e^{-\beta a} + B_{-} e^{\beta a}$$
 ... (1.74)

 $-i\alpha A_{+} e^{-i\alpha a} + i\alpha A_{-} e^{i\alpha a} = -\beta B_{+} e^{-\beta a} + \beta B_{-} e^{\beta a}$ and $i\alpha A_{+} e^{-i\alpha a} - i\alpha A_{-} e^{i\alpha a} = \beta B_{+} e^{-\beta a} - \beta B_{-} e$... (1.75)

Similarly, at x = +a

$$u^{II} = u^{III} \quad and \quad \frac{du^{II}}{dx} = \frac{du^{III}}{dx}$$

$$B_{+} e^{\beta \alpha} + B_{-} e^{-\beta \alpha} = C_{+} e^{i\alpha \alpha}$$

$$\beta B_{+} e^{\beta \alpha} - \beta B_{-} e^{-\beta \alpha} = i\alpha C_{+} e^{i\alpha \alpha}$$

$$B_{+} e^{\beta a} + B_{-} e^{-\beta a} = C_{+} e^{i\alpha a}$$
 ... (1.76)

and
$$\beta B_+ e^{\beta a} - \beta B_- e^{-\beta a} = i\alpha C_+ e^{i\alpha a}$$
 ... (1.77)

Dividing equations (1.77) by (1.76), we have

(1.77) by (1.76), we have
$$\frac{\beta B_{+} e^{\beta a} - \beta B_{-} e^{-\beta a}}{B_{+} e^{\beta a} + B_{-} e^{-\beta a}} = \frac{i\alpha C_{+} e^{i\alpha a}}{C_{+} e^{i\alpha a}} = i\alpha$$

$$\therefore i\alpha \left(B_{+} e^{\beta a} + B_{-} e^{-\beta a}\right) = \beta B_{+} e^{\beta a} - \beta B_{-} e^{-\beta a}$$

$$\therefore i\alpha B_{-} e^{-\beta a} + \beta B_{-} e^{-\beta a} = \beta B_{+} e^{\beta a} - i\alpha B_{+} e^{\beta a}$$

$$\therefore B_{-} e^{-\beta a} (\beta + i\alpha) = B_{+} e^{\beta a} (\beta - i\alpha)$$

$$\therefore B_{-} = B_{+} e^{2\beta a} \frac{(\beta - i\alpha)}{(\beta + i\alpha)}$$

$$\therefore B_{-} = B_{+} \frac{\beta - i\alpha}{\beta + i\alpha} e^{2\beta a} \qquad \dots (1.78)$$

Now, dividing equation (1.75) by (1.74), we get

$$\frac{i\alpha A_{+} e^{-i\alpha a} - i\alpha A_{-} e^{i\alpha a}}{A_{+} e^{-i\alpha a} + A_{-} e^{i\alpha a}} = \frac{\beta B_{+} e^{-\beta a} - \beta B_{-} e^{\beta a}}{B_{+} e^{-\beta a} + B_{-} e^{\beta a}}$$

Substituting the value of B_{-} from equation (1.78), we get

$$\begin{split} \frac{i\alpha A_{+} \ e^{-i\alpha a} - i\alpha A_{-} \ e^{i\alpha a}}{A_{+} \ e^{-i\alpha a} + A_{-} \ e^{i\alpha a}} &= \frac{\beta B_{+} \ e^{-\beta a} - \beta B_{+} \frac{\beta - i\alpha}{\beta + i\alpha} \ e^{2\beta a} \ e^{\beta a}}{B_{+} \ e^{-\beta a} + B_{+} \frac{\beta - i\alpha}{\beta + i\alpha} \ e^{2\beta a} \ e^{\beta a}} \\ &= \frac{B_{+} \ e^{\beta a} \ \beta \ \left\{ e^{-2\beta a} - \left(\frac{\beta - i\alpha}{\beta + i\alpha} \right) e^{2\beta a} \right\}}{B_{+} \ e^{\beta a} \ \left\{ e^{-2\beta a} + \left(\frac{\beta - i\alpha}{\beta + i\alpha} \right) e^{2\beta a} \right\}} \end{split}$$

$$= \frac{\beta \left\{ e^{-2\beta a} - \left(\frac{\beta - i\alpha}{\beta + i\alpha}\right) e^{2\beta a} \right\}}{\left\{ e^{-2\beta a} + \left(\frac{\beta - i\alpha}{\beta + i\alpha}\right) e^{2\beta a} \right\}}$$

$$= \frac{\beta \left\{ (\beta + i\alpha) e^{-2\beta a} - (\beta - i\alpha) e^{2\beta a} \right\}}{\left\{ (\beta + i\alpha) e^{-2\beta a} + (\beta - i\alpha) e^{2\beta a} \right\}}$$

$$= \frac{\beta \left\{ \beta e^{-2\beta a} + i\alpha e^{-2\beta a} - \beta e^{2\beta a} + i\alpha e^{2\beta a} \right\}}{\left\{ \beta e^{-2\beta a} + i\alpha e^{-2\beta a} + \beta e^{2\beta a} - i\alpha e^{2\beta a} \right\}}$$

$$= \frac{\beta \left\{ -\beta \left(e^{2\beta a} - e^{-2\beta a} \right) + i\alpha \left(e^{2\beta a} + e^{-2\beta a} \right) \right\}}{\left\{ \beta \left(e^{2\beta a} + e^{-2\beta a} \right) - i\alpha \left(e^{2\beta a} - e^{-2\beta a} \right) \right\}}$$

$$= \frac{\beta \left\{ -\beta \sinh(2\beta a) + i\alpha \cosh(2\beta a) \right\}}{\left\{ \beta \cosh(2\beta a) - i\alpha \sinh(2\beta a) \right\}}$$

$$\begin{split} :: & \left\{ i\alpha A_{+} \ e^{-i\alpha a} - i\alpha A_{-} \ e^{i\alpha a} \right\} \left\{ \beta \cosh(2\beta a) - i\alpha \sinh(2\beta a) \right\} \\ &= \left\{ A_{+} \ e^{-i\alpha a} + A_{-} \ e^{i\alpha a} \right\} \beta \left\{ -\beta \sinh(2\beta a) + i\alpha \cosh(2\beta a) \right\} \end{split}$$

$$i\alpha A_{+}\beta \cosh(2\beta a) e^{-i\alpha a} + \alpha^{2} A_{+} \sinh(2\beta a) e^{-i\alpha a} - i\alpha \beta A_{-} \cosh(2\beta a) e^{i\alpha a}$$

$$- \alpha^{2} A_{-} \sinh(2\beta a) e^{i\alpha a}$$

$$= \beta i\alpha A_{+} \cosh(2\beta a) e^{-i\alpha a} - \beta^{2} A_{+} \sinh(2\beta a) e^{-i\alpha a}$$

$$+ i\alpha \beta A_{-} \cosh(2\beta a) e^{i\alpha a} - \beta^{2} A_{-} \sinh(2\beta a) e^{i\alpha a}$$

$$\begin{array}{l} \therefore \ A_{+} \big\{ i\alpha\beta\cosh(\,2\beta a)\,e^{-i\alpha a} + \alpha^{2} sin\,h(\,2\beta a)\,e^{-i\alpha a} - i\alpha\beta A_{-}\cosh(\,2\beta a)\,e^{i\alpha a} \\ \\ + \beta^{2} sin\,h(\,2\beta a)\,e^{-i\alpha a} \big\} \\ \\ = A_{-} \big\{ i\alpha\beta\cosh(\,2\beta a)\,e^{i\alpha a} + \alpha^{2} sin\,h(\,2\beta a)\,e^{i\alpha a} + i\alpha\beta\cosh(\,2\beta a)\,e^{i\alpha a} \\ \\ - \beta^{2} sin\,h(\,2\beta a)\,e^{i\alpha a} \big\} \end{array}$$

Now,

$$\frac{C_{+}}{A_{+}} = \frac{C_{+}}{B_{+}} \frac{B_{+}}{A_{+}} \qquad \dots (1.80)$$

But, equation (1.76) is

$$B_{+} e^{\beta a} + B_{-} e^{-\beta a} = C_{+} e^{i\alpha a}$$
 ... (1.81)

Substituting the value of B_{-} form equation (1.78), we get

$$B_{+} e^{\beta a} + B_{+} \frac{(\beta - i\alpha)}{(\beta + i\alpha)} e^{2\beta a} e^{-\beta a} = C_{+} e^{i\alpha a}$$

$$\therefore B_{+} \left\{ e^{\beta a} + \frac{(\beta - i\alpha)}{(\beta + i\alpha)} e^{\beta a} \right\} = C_{+} e^{i\alpha a}$$

$$\therefore B_{+} e^{\beta a} \left\{ \frac{(\beta + i\alpha) + (\beta - i\alpha)}{(\beta + i\alpha)} \right\} = C_{+} e^{i\alpha a}$$

$$\therefore \frac{C_{+}}{B_{+}} = \frac{e^{\beta a} (2\beta) e^{-\beta a}}{(\beta + i\alpha)} \qquad \dots (1.82)$$

Similarly, we can obtain

$$\therefore \frac{B_{+}}{A_{+}} = \frac{\left\{\alpha e^{-\beta a} e^{-i\alpha a} (\beta + i\alpha)\right\}}{-i(\alpha^{2} - \beta^{2}) \sin h(2\beta a) + 2\alpha\beta \cosh(2\beta a)} \qquad \dots (1.83)$$

Using equations (1.82) & (1.83) in (1.80), we get

$$\frac{C_{+}}{A_{+}} = \frac{e^{\beta \alpha} (2\beta) e^{-\beta \alpha} \{\alpha e^{-\beta \alpha} e^{-i\alpha \alpha} (\beta + i\alpha)\}}{(\beta + i\alpha) \{-i(\alpha^{2} - \beta^{2}) \sin h(2\beta \alpha) + 2\alpha\beta \cosh(2\beta \alpha)\}}$$

$$\therefore \frac{C_{+}}{A_{+}} = \frac{2\alpha\beta e^{-2i\alpha \alpha}}{\{-i(\alpha^{2} - \beta^{2}) \sin h(2\beta \alpha) + 2\alpha\beta \cosh(2\beta \alpha)\}} \qquad \dots (1.84)$$

The transmission probability is given by

$$T = \left| \frac{C_+}{A_+} \right|^2$$

$$\therefore T = \frac{4 \alpha^2 \beta^2}{\{-i(\alpha^2 - \beta^2) sin h(2\beta a) + 2\alpha\beta cosh(2\beta a)\} \times \{-i(\alpha^2 - \beta^2) sin h(2\beta a) + 2\alpha\beta cosh(2\beta a)\}}$$

But,
$$\alpha^2 = \frac{2mE}{\hbar^2}$$
 and $\beta^2 = -\frac{2m}{\hbar^2}(E-V_0)$

$$\therefore T = \left[1 + \frac{\left\{\frac{2mE}{\hbar^2} - \frac{2mE}{\hbar^2} + \frac{2mV_0}{\hbar^2}\right\}^2 \sinh^2(2\beta a)}{4 \frac{2mE}{\hbar^2} \frac{2m(V_0 - E)}{\hbar^2}}\right]^{-1}$$

Case: I

If
$$2\sqrt{\frac{(V_0-E)}{\Delta}} = y \gg 1$$

$$\therefore T = \left[1 + \frac{V_0^2}{4(V_0-E)E} \sin^2 y\right]^{-1} \qquad \dots (1.86)$$

But v >>1

$$\therefore \sin hy = \frac{1}{2}(e^y - e^{-y}) \to \frac{1}{2}e^y$$
$$\therefore \sin hy = \frac{1}{4}e^{2y}$$

$$\therefore T = \left[\frac{V_0^2}{4(V_0 - E)E} \frac{e^4 \sqrt{\frac{(V_0 - E)}{\Delta}}}{4} \right]^{-1}$$

$$\therefore T = \frac{16(V_0 - E)E}{V_0^2} e^{-4} \sqrt{\frac{(V_0 - E)}{\Delta}}$$

$$\therefore T = \frac{16(V_0 - E)E}{V_0^2} exp \left\{ -4\sqrt{\frac{(V_0 - E)}{\Delta}} \right\} ...(1.87)$$

Hence, if $V_0 \gg E$ then, $\ll 1$, i.e. transmission probability decreases exponentially.

Case: II

If
$$y \ll 1$$

$$sinhy = \frac{1}{2}(e^y - e^{-y}) \rightarrow \frac{1}{2}[1 + y + \dots - 1 + y - \dots]$$

$$\therefore sinhy = y$$

Hence, equation (1.86) becomes

$$T = \left[1 + \frac{V_0^2}{4(V_0 - E)E} \sin^2 y\right]^{-1} = \left[1 + \frac{V_0^2}{4(V_0 - E)E} \frac{4(V_0 - E)}{\Delta}\right]^{-1}$$
$$\therefore T = \left[1 + \frac{V_0^2}{\Delta E}\right]^{-1} \dots (1.88)$$

The graph of transmission probability is shown in fig.(1.7)

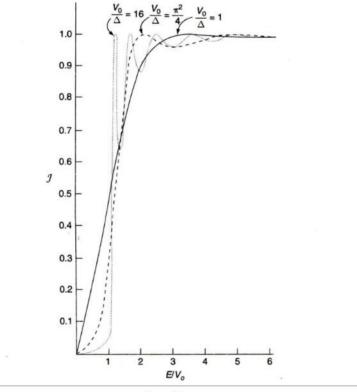


Fig: 1.7

(b) Reflection at potential barrier and well:

The reflection probability is given by

$$R = \left| \frac{A_{-}}{A_{+}} \right|^{2}$$

$$\therefore R = \frac{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a)}{(\alpha^{2} - \beta^{2})^{2} \sinh^{2}(2\beta a) + 4\alpha^{2}\beta^{2} \cosh^{2}(2\beta a)}$$

$$\therefore R = \frac{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a)}{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a) - 4\alpha^{2}\beta^{2} \sinh^{2}(2\beta a) + 4\alpha^{2}\beta^{2} \cosh^{2}(2\beta a)}$$

$$\therefore R = \frac{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a)}{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a) + 4\alpha^{2}\beta^{2}} \dots (1.89)$$

$$\therefore R + T = \frac{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a)}{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a) + 4\alpha^{2}\beta^{2}} + \frac{4\alpha^{2}\beta^{2}}{(\alpha^{2} + \beta^{2})^{2} \sinh^{2}(2\beta a) + 4\alpha^{2}\beta^{2}}$$

$$\therefore R + T = 1 \qquad \dots (1.90)$$

Probability of reflection: For $E > V_0$

$$R = \frac{(\alpha^{2} + \beta^{2})^{2} sinh^{2}(2\beta a)}{(\alpha^{2} - \beta^{2})^{2} sinh^{2}(2\beta a) + 4\alpha^{2}\beta^{2} cosh^{2}(2\beta a)}$$

But in the case of $E < V_0$, $\beta = i\beta'$

$$\therefore \beta^{2} = -\beta'^{2}$$

$$\therefore R = \frac{(\alpha^{2} - \beta'^{2})^{2} \sinh^{2}(2i\beta'a)}{(\alpha^{2} + \beta'^{2})^{2} \sinh^{2}(2i\beta'a) - 4\alpha^{2}\beta'^{2} \cosh^{2}(2i\beta'a)}$$

$$\therefore R = \frac{(\alpha^{2} - \beta'^{2})^{2} \sin^{2}(2\beta'a)}{(\alpha^{2} + \beta'^{2})^{2} \sin^{2}(2\beta'a) - 4\alpha^{2}\beta'^{2} \cos^{2}(2\beta'a)}$$

$$\therefore R = \left[1 + \frac{4\alpha^{2}\beta'^{2}}{(\alpha^{2} - \beta'^{2})^{2} \sin^{2}(2\beta'a)}\right]^{-1} \dots (1.91)$$

Substituting the value of α and β , we get

$$\therefore R = \left[1 + \frac{4E(V_0 - E)}{V_0^2 sin^2 \left\{2\sqrt{\frac{(E - V_0)}{\Delta}}\right\}}\right]^{-1} \dots (1.92)$$

The graph of reflection probability is shown in fig.(1.8).

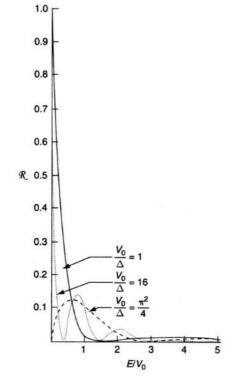


Fig: 1.8

Question Bank

n	A	1	1+1	n	ما	4	10	ico	~1	iest	in	nc
I١	/1	u	π	D	ıe	CI	10	ıce	αı	Jest	Ю	ns

(1)	The operator operating on the wave function s	shoule	d always standing on side									
	(a) Middle	(b)	Right									
	(c) Left	(d)	Upper									
(2)	According to the wave function and it first partial derivative should be											
	functions for all values of \vec{X}											
	(a) Zero	(b)	Continuous									
	(c) Infinity	(d)	discontinuous									
(3)	If the particle moving in a potential ther	the	solution of the wave equation are									
20 20	describe as a stationary states											
	(a) time independent	(b)	time dependent									
	(c) velocity dependent	(d)	velocity independent									
(4)	Any particle with energy cannot enter in	the	regions I and III									
	(a) $E=0$	(b)	$E = \infty$									
	(c) $E < 0$	(d)	E > 0									
(5)	For bound state of a particle in a square well the	ne en	ergy is									
	(a) $E=0$	(b)	$E = \infty$									
	(c) $E < 0$	(d)	E > 0									
(6)	The limit of a region-I for a square well potenti	ial is										
	(a) $-\propto < x < 0$	(b)	$a < x < \infty$									
	(c) $-a < x < a$	(d)	$-\infty < x < -a$									
	()		•									
(7)	The limit of a region-II for a square well potent	ial is										
	(a) $-\infty < x < 0$	(b)	$a < x < \infty$									
	(c) $-a < x < a$	(d)	$-\infty < x < -a$									
(8)	The limit of a region-III for a square well poten	tial is										
	(a) $-\infty < x < 0$	(b)	$a < x < \infty$									
	(c) $-a < x < a$	(d)	$-\infty < x < -a$									
(9)	$\frac{V_0}{\Lambda}$ is a measure the of the potential											
	(a) Height	(b)	Width									
	(c) Strength	(d)	Length									
(10)	There exists at least bound state, how											
,,	(a) Two	(b)	One									
	(c) Three	(d)	Infinite									
(11)	Any wave function having symmetry property											
	(a) Zero	(b)	See the second of the second									
	(c) Odd	(d)	Infinite									
(12)	Any wave function having anti-symmetry prop											
	(a) Zero	(b)										
	(c) Odd	(d)	Infinite									
(13)	For non-localized states of the square well pot											
	(a) $E=0$		$E = \infty$									
	(c) $E < 0$	(d)	E > 0									
(14)	For $E > 0$, the particle has a kinetic en	2000										
	(a) Zero	(b)	Positive									
	(c) Negative	(d)	Infinity									
	NOTE OF THE PROPERTY OF THE PR	/	7.G1967 (7.17.67. 5.1 8)									

Short Questions:

- 1. Define stationary states of the wave function
- 2. Write the time independent Schrodinger equation
- 3. State the physical significance of time independent Schrodinger equation
- 4. Write the admissible solution for a particle in a square well potential
- 5. Define square well potential
- 6. What is the condition of the total probability of the wave function

Long Questions:

- 1. Describe the stationary states and energy spectra of the quantum mechanical system
- Derive the time independent Schrodinger equation and explain their physical significance
- 3. Discuss the motion of a particle in a square well for bound state and derive the admissible solutions of the time independent Schrodinger equations
- 4. Derive the expression of energy eigen values for a particle in a square well using the admissible solutions
- 5. Derive the energy eigen function for a particle in a square well potential
- 6. Discuss the square well potential for non-localized states (E > 0) with the physical interpretation and suitable boundary conditions