B.Sc. (Semester - 6)
Subject: Physics
Course: USO6CPHY21
Quantum Mechanics
UNIT-1 Stationary States and Energy Spectra

Stationary States and Energy Spectra:

The state of a quantum mechanical system is specified by giving its wave function ¥,
If a particle moving in a static or time-independent potential, then the solution of the wave
equation are describe as a stationary states. In these states, the position probabilltv densny

|®]? at every point Xin space remains independent of time. A

When a particle is described by such a wave function its energy has a perfectly
definite value. The energy spectrum i.e. the set of energy values assoc;ated W|th the various
stationary states is discrete. These energy states are described as energy spectra

The Time-Independent Schrodinger Equation:
Let us consider a particle moving in a time- mdependent potential V{(x). By the
method of separation of variable, we can write the, Wave functlon
(2.0 =0 (S (L)
Substituting this value in
ow(X,6)  h?

ih — = 2 vzlp(x t) +V(X ) (X,t)

\ A
ih —[u(X)f(t)] =5 ¥ [ (8) f@O] + V(R O[u(X) 0]
Dividing throughout by u(X) f(t) we get

The R.H.§ is mdependent of t and L.H.S is independent of X. Their equality implies
that both thes smdes must be equal to a constant.

df (t)
ih———== E(t)

h% Vu
2m u

Ve, V()'(’)l _

h? Viu % o 5

L |l———+ V(X X)=FulX
= V(D)D) = Bu()

This is time independent Schrodinger equation.

The solution of equation (1.3) is

?:Edt
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Integration gives,
s E [ —iEt
T
—iEt
i e exp( - ) w5
The solution of equation (1.4) is depends on the value of E. Hence we can write as
uE(X).
Hence, equation (1.1) becomes
w(X,t) =uz(X)e " /n .. (L6)
The wave function ¥ would be vanish as t — o0 or — 0. The value of £ bas to be
real. Hence, the probability density becomes

(%) = fus (B N\DY

Therefore, the probability density is time independent. Expectatlon Value must also
be time independent. '\ '

Equation (1.4) states that the action of the Hamiltonian operator of the particle on
the wave function g (X) is simplify to reproduce the same Wave functlon multiplied by the
constant E. uE(X) is called energy eigen function and E |s callec! energy eigen value. The
energy eigen values refer as energy levels of the system

A Particle in a Square Well Potential:  { ¢
Consider a particle whose potentiéfl.'__._e_ri_'grg_ylf function has the shape of well with

vertical sides defined by
V(x) =0 Yt < —a (Region — 1)
Vix) = ﬁgﬁ’r —a< x <a (Region—II) - (1.8)
Vr=0 “f (Region — III)

Fig: 1.1

The kinetic energy (E — V) can never be negative. Since, V = 0 for |x| > a, (E — V)
can be positive in this region if £ > 0. Hence, any particle with £ < 0 can not enter in the
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region I and III. It will stay within the potential well between x = a and x = —a. Hence,
the particle bound by the potential.
The time independent Schrodinger equation for two regions becomes
h? d?u

STk Eu, for|x|>a

h? d’u
" 2mdx?
» Bound States in a Square Well: (E < 0)
(a) Admissible solutions of wave equation:
For E < 0, we write equations (1.9) & (1.10) as follows:
d’u  2mE

—+—
dx?  h?
d*u  2m 2mE
and @_FFVOH-FFL_H:O

A mEAy S ”
" T2 2 for|x|<a ( egmn Y
Equations (1.11) & (1.12) can be written as

v,
T wu= 0, for |x| > an 'R‘&QIUWI&IH)

—Vou=Eu, forlx|<a

y \
and > = for le <f a (Regwn 10

Where —a2 = 222 and g2 = —Zm(EW‘}}

h? h?
The general solution of equatlon (1 14) is
ulx) =4 casﬁx % B sinfix .. (1.15)
Where A and B are constants .
This is the solution in region H
The general solutlon of equatlon (1.13) in the region-1 & [il is the linear
combination of e C S
> Forreglon— I —eo<x<a
In this reglon as'x » —oo, then ™% - oo,
Therefore the admissible solution in region- I must be of the form
N\ u'(x) = Ce™
P Forregion— III: a<x <o
in this region, as x — o0, then e — oo
':"'”"I‘herefore, the admissible solution in region- 111 must be of the form
u'(x) =D e™** . (1.17)
C and D are constants.

Sre posmve constants.

. e iy : :
The solution u(x) and its first derivative ﬁ must be continuous. At the point x = —a where

regions I & I1I meet, we should have

y du'  du'
=u" and T at (x = —a)

& Ce % = Acosfa — B sinfila

ui

And

Dr P M Patel, V.P. & R.P.T.P. Science College, Vallabh Vidyanagar




—Ce %a=—-Asinflaff — B cosfa f
~Cae ™ =Af sinfla+ Bf cosfa
Similarly, atx = a
(iliij (fllfff

d e
an dx dx

D e % = A cosfla + B sinfia
and —Da e ™™ = —Af sinffa + Bf cosfa
Adding equations (1.18) & (1.20), we get
(C + D)e™™* = 24 cosBa
Adding equations (1.19) & (1.21), we get
(C—D)a e ™ = 2Bf cosBa
Subtracting equations (1.18) & (1.20), we get
(C—D)e ™™ = =2B sinfia
& —(€C—D)e ™ = 2B sinfla
Subtracting equations (1.19) & (1.21}, we get
(C+ D)ae ™™ =248 sinfa
Now, dividing equation (1.25) by (1.22), we get
(C+D)ae ™™ 248 sinfia {
(C+D)e~®a ~ 2Acosfa '
~a= ptanfa \_ &
unlessA=0and C+D=0 ie C=-DN\
Now, dividing equation (1.23) by (1.24), we get _.
(C—D)ae @ ZBﬁ Cosﬁ’a
—(C — D)e“mL 2B smﬁ’a
=g AL catﬁ'a
L= —3 Cotﬁa .. (1.28)
unless B =0 and € — D~0 iie. C=D .. (1.29)
Hence, the combmatron of equatlons (1.26) & (1.29) and (1.28) & (1.27) becomes the
possible solutions. .. ™,

i i1

U =u

There exjst two types of admissible solutions.
(1) When B\=0 and C = D, then from equation (1.22), we get
\ : D = Ae“cospa
(2) Wheﬁ A [} and C = —D, then from equation (1.24), we get
3 2De™%* = 2B sinfia

. . D = B e““sinfa
Hencej Wwe get two set of solutions
a = ftanfa
C=D
B=20
D = Ae““cosfa

a= —f cotfa
C=-D

A=0

D = B e**sinfia
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(b) The Energy Eigen Values: (Discrete Spectrum)
Both the types of solutions exist only for certain discrete values of the energy parameter E.
We have
gt Z:;E and 8% — 2m(Eh2+ Vo)
2mE  2mE  2ml,
Rzt

- a2+ﬁ2=_

Multiplying by a? on both the sides ,we get
(a? + f2)a? =
- (@ + fHa? = o

o (@ + fHa? = "

Where, A= /Zm » is a natural unit of energy as follow.

h?  (m*kg/s)* m‘*kg2 kg m2

" 2ma® kg.m?  kg. mzs
In equation (1. 34) — is a measure of strength of thep .en __al“.
Since a and 8 are positive constants. Hence /ﬁ ._ _.:-taﬁﬁa must be positive and hence
values of fa lying in the followmg mtervals are admissmle.
2'r— [J’a (2?" ¥ 1)— ..(1.35)
Here, (r=0,1,2,..)
Now, substitutinga = f8 tanﬁa in equ-atlon (1.34), we get

:(,GZtanzBa + fH)a* = E

Vo
~ Bra?(tan*fa+1) = 3

V
« B%a? sec’fa = =

A
Vo

B?a? A
AN /2
or |cosfal = (7) pa kL8]
; 0
The modulus sign arises because the left hand side of the equation is known to be positive.
Similarly, substituting &« = —f cotfa in equation (1.34), we get

V,
(B*cot*Ba + B*)a? = EO
, V
~ B2a%(cot?pa+1) = EO
Vo
B2a? A

. sec’fa = .. (1.36)

. cosec’fa =
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1/2
or |sinfal = (%) Ba ..(1.39)

Here also a and § are positive, but “/ﬁ = cotfa, must be negative. Hence value of fa lying
in the intervals
T id
(21‘—1)5 < fa < 27'5 .. (1.40)

Heve, (F=12..)
Equations (1.37) & (1.39) can be satisfied only by certain specific discrete values of 8, which
can be found graphically. These values called £5,, are determined by the intersections of the

e
straight line (A/V ) 2 Ba with the curves for |cosfa| and |sinfal are shown as"s’ |id lines

and dashed line respectively in fig.(1.2). The parts to be ignored are |nd|§;ated b .do‘tted
lines. : ' r

If the intersections occur at [5’ 3 ﬂn (n = (,1,2 ...) the corresponding allowed values of the
energy are obtained as follows-

We know that, "

_ Zm(E +Vy)

= 72

For all pos_s_ib'i’é__“l al_y_'és of n, we can write
W\ NV 2m(E, + Vy)

By = =

th
:@+%:@%r

(B)°R°  a®
* Bt o = Zm =

(Bra)?h®
2ma?
; h?
v B+ V= (ﬁna)z X TR = (ﬁna)ZA

= (Ba@)*A—Vy
= |5 - 1]

¢ EH+V0=
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From fig.(1.2), if (V—) fa — 1inthe interval
0

1 1
E'n:N <fa<=< ER'(N +1)

then there are (N + 1) intersections. In other words, the number of discrete energy level is

(N+1)if
1/2

) 31s%n(N+1)(FO)

NS—(—O) <(N+1)
T\A

Hence, there exists at least one bound state, however weak the potential may be;____

1/2

(¢} The Energy Eigen Functions; Parity:
We have the eigen functions
i) S0e?® | x < —a "
u'(x) = Acospx + Bsinfx ,—a<x<gq (©
ultt(x) = D e, x>a (
Using equation (1.32), we get p
ul(x) = A e““cosfa e ,
ull(x) = A cospx ,
ul(x) = A e cosfa e™ %, |
If we represents valuesof a = ayand § = f5, tahé'ﬁ: : bgv:_(_-;{équations becomes
1,1 (x) = A e@Ccosfa e@\ \
u, ' (x) = AcosBx ,

u,""(x) = A e“ﬂ“cosg.?_z'&}_.e_C,.fftx';'":

" N n=201,2,

The nature of such functidﬁ ____'\l;l__|u-35t'rated graphically in fig.(1.3). u,, (x) is symmetric
about the origin. ..
(0 2l 1:52)
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Any wave function which has this symmetry property is said to be of even parity.
The eigen function corresponding to n = 1,3,5, ... are characterized by equation
(1.33). We have
u,' (x) = —(B e“n“sinf,a )e“r* , x < —a .. (1.53)
u,'"(x) = B sinfx , —a<x<gq .. (1.54)
u, "' (x) = (B e“%sinfi,a) e ¥, x>a ... (1.55)

These functions are |Ilustrated |n flg (1. 4) They are anti-symmetric with respect to
the origin.

i.e. TR Y .. (1.56)
Any wave functlon whlch'_ has thus property of anti-symmetric is said to be of odd

parity. &)
Penetration into Class:ca"y Forbldden Regions:

We knowia, that:_ classical particle of energy F < 0 can stay only in region-Il and
cannot at all° entr"" .__reglon -1 and 1ll. However, the quantum mechanical wave functions u,,(x)
have non vanlsmng values in both these classically forbidden regions. Hence, there is
probablllty Qf flndlng the particle in regions | & IIl. In this regions |¥|? — 0, hence for a large
value of %, the probability — 0. Therefore, the particle cannot escape to infinity distance,
it stay bound to the potential.

The Square Well: Non-Localized States(E > 0) :
In this case, the Schrodinger equations can be written as,

L < dx>a (Region:1&II 157
gz = B for x a and x > a (Region: ) ek LB 7)

Vou =Eu, for x < —a and x > a (Region:II) sl B0)

When, E > 0 Eis positive,
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2m(E+Vy)

and
PE

= f32. Hence equations (1.57) & (1.58) becomes

u=40, for x<—a andx >a (Region:I&III) sl 1.509)

d—+£2u =0, for x<-—aandx>a (Region:il) .. (1.60)

The general solution of equations (1.59) & (1.60) are
ul =G, e £ C_ g, x < —a .. (1.61)
ul = p, e* + p_e X i .. (1.62)
and u''=A,e#f*+A_ e, —_g<x<a .. (1.63)

» Physical Interpretation: _ "
In equation (1.58) the plane wave C, e™* represent the motion of partlcle from x_. = —00
to x = —a i.e. towards right hand side and plane wave C_ e represent the metlon from
x = —atox =—owie. toLH.S. Similarly D, e** and D_ e k¥ represents the wave travel
towards R.H.S and L.H.S from x = +a to x = +co respectively. Slmllarly, we can interpreted
equation (1.63) between the limits x = —a to x = +a. i )
#» Boundary Conditions:

The potential I/; = 0 when x < —a and x > a. Here, E > 0. Hence, the particle has a
positive kinetic energy. The particle cannot stay ._!n-'ﬂ__t_he_\ region. Therefore, the boundary
conditions s\ \°
xl_l)mm ul(x) - 0 and hm u'(x) » 0
are not satisfied. A particle with the wave functlons (1 61), (1.62) & (1.63} is not localized. It
is not confined to any finite reglo_r\]_:_of._____spa_ce. Since |u(x)|? remains nonzero even when x —
+oo. Such wave functions are,not n‘Eii'h:ijaIi“zable.

The solution and its_.ﬁ;r,'st'd.e__\rivatives must be continuous at x = —a and x = +a.
Here, there is not any rést'ri'cfien\é on k or f. Hence, any energy E > 0 is an eigen value.
When E > 0, the contmmty eonditions gives four equations but they involve six unknowns
Ay, Cy, Dy Since, the number of equations is less than the number of unknowns. An infinite
number of selutlans exist. Thus, the energy eigen values from a continuous (not a discrete)
set. Henge; the e___,__e'rgy spectrum for £ > 0 is a continuum.

The proba bility of reflection is given by

[ AE (E +V, ‘
1

+
. (E+Vy)
[ Vi sin? {2 T"}J

This expression is shown graphically in fig.(1.5).
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For very low energies £ — UE\_the';F%'fﬂ._égti&n is almost total. As (E/VO) increases, R oscillates

b, S
between zero and [1 + @:L"}] This bound depends only on (E/VO)' not the width of

the potential well. __ ¢

[« L b . 2
e The freqH_enty;,_g_of ‘oscillation depends on the parameter A= 2?1? , i.e. depend on

width-?qu\____txhé-p_oténtial well.
o Thie‘“—'corﬁp.ljcffe transmission occurs (R = 0) when the energy is such that

gz w; = sin(2fa) =0

The Square Potential Barrier:
(a) Quantum Mechanical Tunneling:

Let us consider a potential barrier as shown in fig.(1.6). There is a effect of the penetration
of the wave function into classically forbidden regions. It means there is an ability of
particles to tunnel through barriers of height V.
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Fig: 1.6

The potential of the square well barrier is given by
0, x < —a &
Vo = Vo, —a<x<afl® X
0, -
The Schrodinger equations for region | and Il becoptes™
ﬁZ d2u o W -

2mEk
Where, a? =

The solutions of equations (1.66) are
ul = A, e + A_e710% | x < —a .. (1.68)
and u!''l=C "™ +(_eiox x>a .. (1.69)
A, A_,C, & C_ are constants.
> A, e'™ represent the particles are incident on the barrier only from the left
side with positive momentum, and
» A_ e~ represent the particles moving with momentum —hk away from

the barrier i.e. the particles reflected by the barrier.

A_
~ Amplitude for reflection = 5
-+
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A_
~ Reflection probability = A .. (1.70)
+
In region Il , the particles cannot moving to left, Hence C_ = 0

u”f C eurx (171)
This wave function represent that particles moving to the right, which could come only by

tunneling through the barrier from region-I.

&
~ The amplitude for tuneeling = A_+
2 +
+

& Tunneling probability = [—
+

The solution of equation (1.66) in region Il is
T=PB ef*+B e F*
Now, the continuity conditions at x = —a are
du'  du!
dx  dx
Hence, using continuity condition, we have
A e 4 4 glac —B e Fe B efa _ .
and —igA, e "% + igA_e'* = —FB, e'ﬁ“ + BB e'g“L
iaA, e~ _ jn) el@a — BB, e” BB ﬁ’a )
Similarly, at x = +a

gt = it

B,ePr+ B _e7P2 = (
and BB, ePt — BB_ e B2 =  ialylei®%
Dividing equations (1.77) by (1.76);5;g§'e_:_ha;§}’e
BBNeP? —PB_eFe  jaC, eloc
_B;;;éﬂc.g_dn_._B_ e-Pe ~ (,e@
g, e BB, efe — BB_e~Pa
"_5“4—58 e fe = BB efr —jg B, efc
B e P + ia) = B, eP(B — ia)
250 (B = i)
B+ ia)
"B = B, b 1% 2pa
- p+ ia
Now f--d)vldlng equation (1.75) by (1.74), we get
iaA, e 1% — jgA_ e'*@ _ BBy e fe _gB eha
Ay e iea 4 A giea  — B e-Bay B efa
Substituting the value of B_ from equation (1.78), we get

ica ﬁB+€_'8a ﬁB p-ia Zﬁ’aeﬁa

B+ i

=i

~B_ =B, e

i, e”1% — jqA_e

A+ e-i({u_ +A_ efdﬂ ,8[1 + B+ 18 ia Zﬁa eﬁa
B+ ia

B+ e,{?a ﬁ {e—z,{?a _ (ﬁ_i) ez,{?a}

_ f+ia
"B, oba [o-2pa + (1) gaka]

B+ ic
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_ ﬁ {e—zﬁ’a s (fm) eZﬁa}
ez + (Fia) o)
B {(B+ ix)e P2 — (B — ia)e?P}
(B + i)e%Ba 4+ (B — ia)e?Ba}
B {Be 2Pt 4+ iqge2Pa — g g2 4 jge2Ba)
~ {Be Pt ige 2P+ e2Be — jge2Ba}
B {—B (%t — e 22} + iq (e2P2 + e2P0)}
{ﬁ (ezﬁa e e—Zﬁa) — i (ezﬁa _ e—zﬁa)}
_ P {—B sinh( 2Ba) + ia cosh( Zﬁa)} E
~ {Bcosh(2Ba) — ia sinh( 2a)}” N .,
o iad, €7 — jqA_ e"*YB cosh( 2pa) — ia sinh( 2Ba)} > NN )
= {4, e71®% + A_e'*}g {—B sinh(2Pa) + i cosh( Zﬁa)]
. iaA,f cosh( 2Ba) e ' + a?A, sin h( 2fa) e i@ La[J’A cos“h( 28&) g
— a?A_sinh( 2Ba) e'**
= B iaA, cosh(2Ba) e™'** — B2 A, sin p( 2[3’&) e'“ML
+ iafA_ cosh(2Ba) e — B*A_sin h (" ZBa) glaa
+{1aﬁ cosh( 2Ba) e™ " + a?sin h( 2Ba) e““a ta'ﬂA cosh( 2Ba) et*@
+ B2%sin h( 2fa) e~'e*} .
A {Laﬁ cosh( 2Ba) e'** + a Sl ZBa) ei‘m + iaf cosh( 2Ba) '@
— B?sin h( 2fa) e'**} C \ 3
. Ap(@® + BHsinh(2Ba)e” ™
=A_ {Zzaﬁ cosh( Zﬁa) e“’m +4 (a — B¥)sinh( 2Ba) e‘“a}
(af + $2)sin h( 2fa) e %@
{(a:2 ﬁz)sm h(2fa) e'a + 2iapf cosh( 2fa) ei*a}
_ —1(& 5 f2) e” @4 sinh( 2Ba)
_'—1(a2 ﬁz)snlh(Zﬁa)4—2aﬁcmsh(2ﬁa)

But, eq ua;’?\f‘b,n (_1_
. X B efi+ B_e Pr = (, el®@
Substntutmg the value of B_ form equation (1.78), we get

- (B —ia)
(B + ia)

. o (ﬁ LCZ) — fcea
..f)hr{e"'g +(ﬁ+m) }— foe

. B, ¢fa {(}3 +ia) + (B — LCL’)} _ ¢, giaa

B.e +B+ g2fap—Pa — By glaa

(B +ia)
C, ePr2p)eFe
"B, (B+ia)
Similarly, we can obtain
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B, {ae Pae ot (B + ia)}
" A,  —i(aZ— B2)sinh( 28a) + 2af cosh( 2Ba)
Using equations (1.82) & (1.83) in (1.80) ,we get
C, efr(2p)e P a e Pa gm0 (B + ia)}
A, (B +ia)—i(a® — B?)sinh(2Ba) + 2ap cosh( 2Ba)}
. C_,_ 20.’5 e—zia:a
- A_+ - {—i(a? — B?)sinh( 2Ba) + 2ap cosh( 2Ba)}
The transmission probability is given by

Gy
"ela
— 4 a’p? € . NJ
 {~i(a? — B)sin h( 2fa) + 2af cosh( 2Ba)} X {—i(a? — f2)sin h( 2fa) +2aﬁcoqh( 28a)}

-1

{(az — B2’ sink? (2fa) — 4a® fsink? 2fa) + 4a2B?cogﬁz(éPa)}
-.. T i | —
4 q2p? W
LT (a? + ﬁZ)ZSinhz(zﬁa) =
AT = ll + 4 a?f? .- l :
:15 and 82 = —%(E—VD)

.. (1.85)

2
But, a? =

1

ImE  2mE N 2 -
— + } Winh“(2fa

{nz Az N hz N (2Ba)

2t 2V —F)

_ D B

~T= 11+

(Vo = ) (Vo—E

(because (fa)? = 2

» Case: |

l +—4(V0—E)E sin“y

But, y »{I\

1 1
~sinhy = E(ey —ig HY Eey
s sinhy = l823’
4
wB]
4 [
_[ Vi SN ]
- {4(1/0 —E)E 4

o T

16(Vo —E)E _, |(Vo—E)
T=—2—2— et |2
Ve A
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16(Vy — E)E (Vo — E)
T = V—DZ exp< —4 e .. (1.87)
Hence, if Vy > E then, < 1, i.e. transmission probability decreases exponentially.
» Case: |l
Ify «1

1 1
sinhy = S(e¥ —e™) = S[l+y+ . —1+y—-.]

& Sinhy =y
Hence, equation (1.86) becomes
V2

Ve 4(Vo — E)

—1 —1 :
T=|1 sinzyl =1+ ]

PR
4(Vy — E)E 4(Vo—E)E A

ve1 !
i T — ll +E

The graph of transmission probability is shown in fig.(1.7)

(b) Reflection at potential barrier and well:

The reflection probability is given by
2

R=|—
A

(a? + B*)?%sinh?(2pa)
(a? — B?)?sinh?(2Ba) + 4a?f?cosh?(2Ba)
(a? + B?)2%sinh?(2Ba)
- (a? + B?)?sinh?(2fa) — 4a?B?sinh?>(2Ba) + 4a?B?cosh?(2fa)

~R=

~ R
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(a? + B?)%sinh*(2Ba)
(a2 + B?)%sinh?(2fpa) + 4a? S
(a? + B*)%sinh?*(2Ba) 4q? B
(a? + B?)%sinh?(2Ba) + 4a?fp> + (a? + B?)%sinh?(2Ba) + 4a?p?

.‘.R:

~R+T=

“R+T=1 ..(1.90)
Probability of reflection: For £ > V,
(a? + B2?)2sinh?(2Ba)
(a? — B?)?sinh?(2pa) + 4a?B?cosh?(2PBa)
Butin the case of E < Vy, B = if’

R =

" B2 =—p"
(a?—pB'%)?sinh?(2if'a)
(a? + )f?’z)zsmf'a2 (2iB'a) — 4a?B?cosh? (215 a)
2—B?)?sin®(28'a) _
(a? + [J”Z)zsmz(Zﬁ a) — 4&26’26032(28 a)

~“R=

“R=

4a’p'? -
~R=|1+— 7 >
(@? — B2)2sin? (2B'a)
Substituting the value of & and 8, we get

4E(Vo — E)

Vnzsinz{ AEND

The graph of reflection proba bility ISshown in&"fig.(l.S).
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Fig: 1.8
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Question Bank

Multiple choice questions:
The operator operating on the wave function should always standing on
(a) Middle (b) Right
(c) Left (d) Upper
According to the wave function and it first partial derivative should be
functions for all values of X
(a) Zero (b} Continuous
(c) Infinity (d) discontinuous
If the particle movingina potential then the solution of the wave equation are
describe as a stationary states 4
(a) time independent (b} time dependent :
(c) velocity dependent (d) wvelocity independ}ént"-’:,._ )
Any particle with energy cannot enter in the regions | and Il §_ X v
(@) E=0 (b) E=oc NN
(c) E<O (d) E>0 [ N\
For bound state of a particle in a square well the energy is )
(a) E=0 (b) Egoc N\
() E<O (d) E>0
The limit of a region-I| for a square well potential i,
(a) —x<x <0 y, B
() —a<x<a WY

The limit of a region-Il for a square wé_li__l"_"p_"cﬁte_nfci_:é"'l is

(a) —x<x<0 ) (b)) a<x<x

() —a<x<a ) . d) —x<x<-a

The limit of a region-lll for a sﬁdyar\é('WeII potential is

(a) —x<x<0 (b) a<x<x

) —a<x<a (d) —x<x<—a

% is a measure the,. (> '\ 'of the potential

(a) Height _ N (b) Width

(c) Strengthy ) () (d) Length

There exiéij_s.___at legst ' bound state, however weak the potential may be
(a) Tl \\, (b) One

(c)¢ fl?_hré“a_.__v - (d) Infinite

Any'wave function having symmetry property is said to be of parity

~(a) Zevo (b) Even
N\, (8 MNodd (d) Infinite

“why wave function having anti-symmetry property is said to be of parity
(a) Zero (b) Even

(c) Odd (d) Infinite

For non-localized states of the square well potential

(a) E=0 (b) E =«

(c) E<O (d) E>0

For E > 0, the particle has a kinetic energy

(a) Zero (b) Positive

(c) Negative (d}) Infinity

Dr P M Patel, V.P. & R.P.T.P. Science College, Vallabh Vidyanagar




Short Questions:
1. Define stationary states of the wave function
Write the time independent Schrodinger equation
State the physical significance of time independent Schrodinger equation
Write the admissible solution for a particle in a square well potential
Define square well potential
What is the condition of the total probability of the wave function

Long Questions:

1. Describe the stationary states and energy spectra of the quantum mechanical system

2. Derive the time independent Schrodinger equation and explain their physu:al
significance ~\¢
Discuss the motion of a particle in a square well for bound state and derive the""" 5
admissible solutions of the time independent Schrodinger equatlons N
Derive the expression of energy eigen values for a particle in a square well using the
admissible solutions N
Derive the energy eigen function for a particle in a square weli potentlal
Discuss the square well potential for non-localized states(E > O) With the physical
interpretation and suitable boundary conditions
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