<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

Very small	0.5 to 1 kW
Small	1 to 15 kW
Medium	15 to 200 kW
Large	250 to 1000 kW
Very large	1000 kW to 6000 kW

Single wind turbine generators rated 14 MW are under development (1990). In India, wind farms are operating in Tamil Nadu and Gujarat since 1989. Several new projects totaling 500 MW are at various stages of execution. Wind energy is a manifestation of the solar energy. Wind is the air-in-motion. Energy in the wind is converted into rotary mechanical energy by the wind-turbine. The rotary mechanical energy is used for several applications such as Pumping water Grinding flour Driving generator rotors to produce electrical energy. Mind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy at wind turbine shaft → Mechanical energy utilization Wind Energy → Mechanical energy is useful for pumping water, grinding grains, operating, wood-saw etc. The electrical energy can be used by stand-alone loads or by the loads connected to the distribution system Several types of wind-turbines have been developed, installed and are being operated successfully. These are classified into two main categories: Horizontal shaft wind turbine Wind-turbine generators have become commercially successful products and are being encouraged by the departments of Non-conventional and Renewable Energy. Horizontal shaft wind-turbine generator units are more popular. The generator-turbine unit is mounted on a tall tower.

Electrical energy		Electr
bu concretor	\rightarrow	energ
by generator		utiliza

<text><text><text><text><text><list-item><list-item><list-item><text><text>

	s, farms, remote on-shore a	nd off-shore installation a
from main electrical grid.	Correction a l	II
	Symbol	Units
	V	m/s
Area of stream	А	m²
Air mass	m	Kg Va (a
Air mass flow, rate	M _d	Kg/S
Air mass density		Kg/m ²
conversion factor for wind	К	
Speed to power unit	KEw	m/s
Floatnicel never	Pe	J
Electrical power	E	vv t
density m d. Flowing air has kinet Power density (P w) of wind For simplified analysis, we l	ic energy KE_w, is proportional to V³ . begin with the basic power e	quation.
$P_w = k V^3$ W/m^2 Where,		
$\mathbf{P_w} = \mathbf{W}$ ind power density, V wind-turbine blade sv	<i>W</i> /m ² (the m ² , represents ar vept area)	ea of wind stream crossin
$\mathbf{k} = $ Conversion factor for w	vind power	
from dimensional analysis, the di	mensions of k are	
$[k] = \left[\frac{W/m^2}{m^3/s^3}\right] = \left[\frac{Ws^3}{m^5}\right] = Ws^3n$	n^{-5}	

$$P_w = k V^3 \qquad \dots W/2$$

$$[k] = \left[\frac{W/m^2}{m^3/s^3}\right] = \left[\frac{Ws^3}{m^5}\right] = Ws^3m^{-5}$$

$$\overline{m} = \rho A V_i$$

$$P_t = \frac{\rho A V_i^3}{2} \dots W$$

Fig – 8.6 Power coefficients for various	types of wind turbines for r	practical blade tip speed
ratios		
Table 9 6 Efficiency	of Various Tymes of Wind Ty	whine
	of various Types of Willu Tu	Indines
Type of Wind Turbine	Ratio: Blade Tip Speed Wind speed	Actual Efficiency (η _a)
Ideal propeller type	1 to 4	0.4 to 0.55
High-speed 2 blade propeller type	4 to 7	0.4 to 0.45
Darrieus	4.5 to 7	0.25 to 0.35
Multiblade	0.25 to 1.4	0.02 to 0.15
$P_{i} = \text{incoming wind pressu}$ $P_{e} = \text{Wind pressure at exit f}$ $v = \text{Specific volume} = 1/\rho$ Assuming no energy loss and no change Incoming wind energy $P_{i}v + \frac{v_{i}^{2}}{2} = P_{-}v + \frac{v_{a}^{2}}{2}$	re, From blades, WW e in air density, rgy = Exit wind energy	
Or		
$P_i + \rho \frac{{V_i}^2}{2} = P_a + \rho \frac{{V_a}^2}{2}$		1
Where, P_i , P_a and V_i , V_a are pressures an	d volumes respectively and	are the specific volum
and specific density.		-
The specific volume and specific density	y both considered constant,	v = 1/e.
Similarly, for the exit end, we g	et	
$P_{e} + \alpha \frac{V_{e}^{2}}{e} = P_{h} + \alpha \frac{V_{b}^{2}}{e}$		1
The wind velocity decreases from $2 - p + p - 2$	inlet plane 'a' to exit plan	e 'b' as kinetic enerov
	o incoming volocity V d	crossos gradually as
converted into machanical work Th	e incoming velocity v de	creases gradually as
converted into mechanical work. Th		and $V_b > V_e$, and therefore
converted into mechanical work. Thapproaches the turbine to V_a and as it l	eaves it to V _e . Thus V _i >V _a a	

$$P_i v + \frac{{v_i}^2}{2} = P_a v + \frac{{v_a}^2}{2}$$

$$P_e + \rho \frac{V_e^2}{2} = P_b + \rho \frac{V_b^2}{2} \qquad \dots \dots 13$$

$$P_a = P_i + \rho \frac{V_i^2 - V_a^2}{2} \qquad \dots \dots 133$$

$$P_b = P_e + \rho \frac{V_e^2 - V_a^2}{2} \qquad \dots 13b$$

$$P_a - P_b = \left[P_i + \rho \frac{{V_i}^2 - {V_a}^2}{2}\right] - \left[P_e + \rho \frac{{V_e}^2 - {V_a}^2}{2}\right]$$

$$P_e = P_i$$

$$V_t \approx V_a \approx V_b$$

$$\boldsymbol{P}_a - \boldsymbol{P}_b = \boldsymbol{\rho} \left[\frac{\boldsymbol{V}_i^2 - \boldsymbol{V}_e^2}{2} \right] \qquad \dots \dots 17$$

$$F_x = (P_a - P_b)A = \rho A \left[\frac{{V_i}^2 - {V_e}^2}{2}\right] \qquad \dots \dots 18$$

$$\overline{m} = \rho A V_t$$

$$F_x = \rho A V_t (V_i - V_e)$$

$$V_t = \frac{1}{2}(V_i + V_e)$$

$$\mathbf{P} = \overline{m} \frac{V_i^2 - V_e^2}{2} = \frac{1}{2} \rho A V_t (V_i^2 - V_e^2) \qquad \dots 23$$

$$\mathbf{P} = \frac{1}{4}\rho A(V_i + V_e)(V_i^2 - V_e^2) \qquad \dots 2^2$$

$$3{V_e}^2 + 2{V_i}{V_e} - {V_i}^2 = 0$$

$$V_{e.opt} = \frac{1}{3} V_i$$

$$P_{\max} = \frac{8}{27} \rho A V_i^3 \qquad \dots 26$$

$$\eta_{\max} = \frac{P_{max}}{P_t} = \frac{8}{27} \times 2 = \frac{16}{27} = 0.56$$
27

<text><list-item><text><text><text><text><text><text><text><text><text><text><text>

and pushes the blade in desi	red direction.
Гable - 9.1 Horizontal Axis V	Vind Turbines
Type and Configuration	Remarks
1. Propeller Type Horizontal Axis	 3 Blade Propeller type design, most successful configuration all over the world. Very wide range of ratings Small, medium, large machines 15 kW to 3 MW unit rating. Single Blade designs for small and medium size. Double and Triple blade design for medium and large sizes. Wind turbines, Gear, Generator are with common axis, mounted in 'nacelle' installed on a tall tower. Blade pitch control controls speed power. Teethering control for mono-blade and twin-blade turbines. Yaw control positions the nacelle. Several small units installed in a wind farm. Electrical generators operate in parallel Blade tip speed Wind speed = 2 to 0.44 Efficiency factor (ideal maximum) = 0.58 (Practical) = 0.4 to 0.44
2. Space Frame Rotor Mans forth Design	 Very large sizes and unit ratings: 3MW to 14MW Large Framed space structure (like a Giant wheel), supports the blades in two parallel vertical planes in symmetrical radial fashion. Commercial success uncertain A few prototypes of lower ratings have been built successfully Prospects uncertain
3. Wind Mill type Multi blade Design	 Several blades arranged symmetrically around a central rotatable hub Blades with increasing width and with a slant Design evolved from traditional wind mills Used for pumping Not used for power plants
4. Bicycle Wheel Multi-blade design	 Simple symmetrical construction Several blades arranged radially like the spokes of a bicycle wheel but with certain width and slant Used for pumping sets Not used for power plants

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header>

<text><text><text><text><text><text><text><text><text>

т	Table: 9.3 Specificat	tions of 3 h	lade wind turbine ge	merator	
	able: 5.6 Specifica	330kW u	init	750kW unit	
Rotor					
Rotor type		3-blade upwind		3-blade upwind	
Rotor diameter	r	31 meter		45 meter	
Rotor speed	1	37 rev/m	nin	30 rev/min	
Blade materia	l	Wood ep	oxy laminate	Wood epoxy laminate	
Aerodynamic	control	(0_30°)	pitch blade tips	$(0_{-}30^{\circ})$	
Maximum chor	rd	175 m		26m	
Tin chord	u	0.8 m		0.8 m	
Blade twist		14.0°		13.0°	
Rotor weight		5.4 t		14.6 t	
Transmission					
Gear box type		3-stage p	arallel shaft	2-stage epicyclic	
Gear type		Helical	. C	Spur	
Gear ratio		48.8:1		40:1	
Generator type		Induction	n or synchronous	Induction	
Generator ratin	1g	330kW		750kW	
Rated voltage &	arrequency	460V & 60Hz		4.16 KV & 60HZ	
Nacelle weight		170+		40.0 t	
		17.01		10.01	
Tower type		Tubular	steel with base	Tubular steel. conical	
Tower diamete	r	1.8 m		2.5 m	
Base diameter	C	4.0 m		7.0 m	
Rotor centerlin	e height	25.0 m		36.0 m	
Yaw system		Geared h	ydraulic motor	Geared hydraulic motor	
Tower weight		22.3 t	22.3 t 29.4 t		
T-1-1-0				. C	
I able 9.4	Rated nov	1 2.5 MW, 2	Blade wind Turbine	2 5 MW	
Terrormance	Wind velocity /h	r	At 10 m height	At huh	
	Cut – in		14 m height	22	
	Rated		32 m height	44	
c_{1}	Cut – out		58 m height		
42,	Max. desig	n limit	192 m height 20		
Wind – Turbine	Diameter		91 m		
$\alpha (1) $	Number of blade	S	Two		
	Location, rotation	n	Upwind, counter c	lockwise	
	Revolution per m	ninute	inute 17.5		
	Lone, tilt, twist a	ngles	0, 2, 8		
	Tip length, each		Steel		
Tower	Height		58 5 m		
100001	Hub – height		61 m		
	Туре		Flared shell		
	Access		Power man lift		
			1		

Performance	Rated power	2.5 MW	
	Wind velocity /hr	At 10 m height	At hub
	Cut – in	14 m height	22
	Rated	32 m height	44
	Cut – out	58 m height	72
42	Max. design limit	192 m height	200
Wind – Turbine	Diameter	91 m	
\sim	Number of blades	Two	
\mathbf{V}	Location, rotation	Upwind, counter clockwise	
	Revolution per minute	17.5	
	Cone, tilt, twist angles	0°, 2°,8°	
	Tip length, each	45 ft. 13.7 m	
	Material	Steel	
Tower	Height	58.5 m	
	Hub – height	61 m	
	Туре	Flared shell	
	Access	Power man lift	

Controle	Dowor regulation	Poter tip pitch control bydraulic
Controis	Power regulation	Rotor – tip pitch control, hydraulic
	Yaw	Internal toothing gear
	Yaw motor	Hydraulic , 0.25 Deg/s
	Supervisory	Microprocessor
Generator	Rating power factor	3125 kVA, 0.8
	Voltage, frequency	4160 (three - phase), 60 Hz USA standard
	Revolution per minute	1800
	Gear box	Three – stage planetary
	Gear set – up ratio	103
Mass	Rotor	81,670 kg
	Rotor and Nacelle	165,150 kg
	Tower	115,700 kg

	Controls	Power reg	ulation	Rotor	- tip pitch	control. hvdr	aulic
	Gontrois	Yaw	ulution	Interi	nal toothing	gear	uune
		Yaw moto:	r	Hydra	aulic , 0.25 I	Deg/s	
		Superviso	ry	Micro	processor		
	Generator	Kating pov	wer factor	3125	KVA, U.8 (three - ph	260) 60 Hz II	SA standard
		Revolution	n per minute	1800	(three - pha	ase <i>)</i> , 00 112 0	SA Standard
		Gear box	r	Three	e – stage pla	netary	
		Gear set –	up ratio	103			2
	Mass	Rotor	Nagalla	81,67	0 kg		62
		Tower	Nacene	105,1	50 kg 100 kg		
		Tower		113,7	00 Kg		$\sqrt{00}$
			QUI	ESTIONS			
Part	t-1: Multiple Ch	oice Question	ns:		6	2.	
1.	Energy in the	wind is conv	verted into ro	otary mec	hanical en	ergy by the_	
	(a) wind-tu	rbine (b)	pumping	(c)	generato	r (d)	spring
2.	The horizonta	al shaft wind	-turbine gen	erator uni	it is mount	ed on a	
	(a) Ground	level (b)	tall tower	(c)	On river	bank (d)	On mountain
3.	The vertical s	haft wind tu	rbine units a	re mounte	ed on grou	nd level.	0
1.	(a) tall towe	r (D)	Un river ba	nk (c) NTCII) ar	Ground I gonorally	evel (a)	On mountain
ť.	(a) Wind fai	rm (h)	multi unite	(c)	double u	Dullt as nits (d)	 single units
5.	The maximum	n efficiency c	of c propeller	type win	d-turbine i	s only	percent.
	(a) 59	(b)	50	(C)	48	(d)	35
5.	The ideal or n	naximum the	eoretical effic	ciency η_{ma}	_x also calle	d the	of a wind-
	turbine.						
	(a) Power	(b)	power	(c)	efficiency	7 (d)	Ripple factor
7	efficienc	y	coefficient	- t	l : 1		
/.	Energy in the	wind is conv	Plado	otary mec	nanical en	ergy by the <u>d</u>	Towor
2	(a) pitci co	tial for usefu	Diaue	(U) tio about	willa tu	ulle (u)	Tower
<i>.</i> .	(a) 50000	W (h)	15000MW	(<u>c</u>)	25000kV	(d)	25000 MW
Э.	The wind tur	bine, gears a	nd generator	together	form a	·	
	(a) Unit	(b)	propeller	(c)	tower	(d)	Wind mill
10.	Force on a bla	ade is propor	tional to	•			
	(a) V^2	(b)	V^3	(c)	V^4	(d)	V^n
		_					
Part	t-2: Short answ	er questions:	_				
i.	Give the ener	gy chains of	wind energy		<u>.</u>	1.	
ii	Write availab	le options fo	r wind-elect	ric energy	conversio	n plants.	
11. 	Prepare a tab	ie for efficier	icy of variou	s types of	wind turb	ines.	
iii.	Doccribe in al	$10rt_{-}$ an $nrare$	ELISTIC DE LITA	: wind luff	ome gellel	at01.	
iii. iv.	Describe in sh Enlist the adv	10rt- charact	advantages a	nd annlie	ations of M	ono-hlade	norizontal avie