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Subject: Physics
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Classical Mechanics

UNIT-1 LAGRANGIAN FORMULATION

Introduction:

We can write the equation of motion of a particle in terms of the Cartesian or polar
coordinates. Consider the motion of a particle in a central force field. We studied this
motion by using plane polar coordinates r and ©. The motion of a projectile is considered in
the Cartesian coordinate system. Hence particular coordinate system chosen to simplify the
problem. Such a dependence on the coordinate system is undesirable.

In the Lagrangian formulation, we should write the equation of motion without any
specific reference to the coordinate system used. This is the approach in the Lagrangian
formulation of classical mechanics. There are number of advantages over the Newtonian
formulation. The Lagrangian formulation is of a very general nature and makes use of
generalized coordinates and velocities which are independent of the coordinate system.

Constraints:

The motion of a free particle is described by three independent coordinatesx,y,z in
Cartesian system or r,8, ¢ in polar coordinates. The particle is free to execute motion along
any axis. The particle has three degrees of freedom.

The number of independent ways in which a mechanical system can move without
violating any constraints is called the number of degrees of freedom.

In other words, the numbers of degrees of freedom is the number of independent
variables to describe the positions and velocities of all the particles.

Examples:

e For the system of N particles, the number of degrees of freedom is 3N.

e For a particle constrained to move on a plane then two variables x,y or r, 8 are
sufficient to describe its motion. The particle has two degree of freedom. Hence, the
constraints on the motion of the particle in a plane, reduces the number of degrees
of freedom by one.

e If the particle be tied to one end of a rigid rod, then particle is move along a circle.
This motion is described by single variable 6 and has only one degree of freedom.
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When the motion of a system is restricted in some way are known as constraints. A
constrained motion is a motion which cannot proceed arbitrarily in any manner. The particle
motion is restricted to occur only.

Example: A bead sliding down a wire, a disc rolling down an inclined plane, the
motion of simple pendulum, motion of spherical pendulum, motion of rigid body etc. are
examples of constrained motion.

When constraints are introduced into a system its number of degree of freedom is

reduced.

> In the case of rigid body, the constraint is that the distance between any two
particles of the body is constant. It can be written as,

N 512 5 12 2 2 2
|ri - r]| = |ri]-| = (xi - xj) + (yl- - yj) + (zi - Zj) = contant . (1.1)
Where, 7; and 77] are the position vectors of i*" and j* particles respectively.

> A simple pendulum moving in XY-plane as shown in fig.1.1, the two equation of the

constraints are,

z = 0and x* + y? = |?> = contant ..(1.2)
8 T > Y
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Fig. 1.1 — Constrains on a simple pendulum
Here, one variable 8 is sufficient to locate oscillating particle P.

> The equation of constraints in the case of a particle moving on or outside the surface

of a sphere of radius ‘a’ is
x2+y?+z2>a? .. (1.3)
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Fig. 1.2 — Generalised coordinates of particle constrained to
move on the surface of a sphere
= [f the particle is in contact with the surface of the sphere then,
r2=x*+y*+z%=a*
= |f the particle leaves the surface then,
r2=x?+y%?+z%>a?

Thus, a constraint is a restriction on the freedom of motion of the system in the form of a
condition.

(a) Holonomic and Non-Holonomic constraints:
» A constraint which can be expressed in the form of an equation relating the
coordinates of the system and time in the following way is called holonomic

constraint.
The general form of equation for a system of N particle is

Fi[x1, V1,21, X2, Y2, Za, e e . Xy VN> ZNo E] = 0 - (1.4)
where i = 1,2,3 ... ....k and F; is some function of the coordinates. Here, i denotes

the i" constraint.

» A constraint which cannot be expressed in the form of an equality relating the
coordinates of the system and time is called holonomic constraint. It may be in the
form of inequality.

» If there are k constraints, the number of degrees of freedom is reduced to (3N-K).
Hence, instead of 3N coordinates, we can assign the (3N-K) independent variables
like g1, G2, Qs v o oue gsn—p to describe the system. These variables have not the
dimensions. Such variables are called the generalized coordinates.

For examples, g = 6 in simple pendulum, g; = r and g, = 8 in the case of motion of
a particle in a central force field are generalized coordinates.

» A set of independent coordinates g4, q3, q3, - - - qzn—r is called a proper set of
generalized coordinates.

The constraints cannot be always written in terms of coordinates but also in
terms of velocities.
For example, a disc of radius ‘a’ rolling down from an inclined plane as shown in
fig.1.3

Dr P M Patel, V.P. & R.P.T.P. Science College, V.V.Nagar Page 3



Fig. 1.3 — Generalised coordinates of a disc rolling down an
Inclined plane without slipping

The equation of constraint is

2 =ad, or  dl=adb .. (1.5)
Integrating this equation, we get
l — af = contant ..(1.6)

This is holonomic constraint.

(b) Scleronomous and Rheonomous constraints:

= When the constraints are independent of time are known as Scleronomous
constraints.

= When the constraints are depends on the time are known as Rheonomous
constraints.

= The constraints in the case of rigid body areScleronomous constraint while that of a
bead of a rotating wire loop is Rheonomous.

= |f we construct a simple pendulum whose length changes with time i.e. [ = I(t),
then constraint is time dependent. If the radius of the sphere is changing with time
i.e. r=7r(t), the constraint is also time dependent. These are Rheonomous
constraints.

Generalized Coordinates:

For a system of N-particles, there are ‘k’ constraints then all the 3N coordinates of all
the N-particles in the system are not independent. The forces of constraints are not always
known because they may depend upon the motion itself. In such a case, we can introduce a
proper set of variables g4, g2, ..« ... qn Where,n =1,2,.....(3N — 1) are called generalized
coordinates. These 3N-k variables describe the system completely.

The transformation equations can be written as

% = %(q1, Gy o oo Gus £) = %:(5, t)
Yi = ¥i(qu @z e e -G, 1) = ¥i(g;01) - (L7)
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Above equation can be reduced to a single vector equation as

?i = Fi (qll 42y oee eenonn qn t)} (1 8)
L f = Fi(qj,t) A
Where,i = 1,2, ......... Nandj=1,2,...... n
lllustrations:

1. Simple Pendulum:

The motion of a simple pendulum oscillating in a vertical plane can be described in terms

of Cartesian coordinates x and y.

—
e e TR S p—————

Fig. 1.4 — Generalised coordinates of particle constrained to
move on the surface of a sphere

But
x =lcos@ and y = lsinf ...(1.9)

Since, [ is a constant, the only variable involved is 8. It can be chosen as the generalized

coordinate.

q=6= cos‘1§ or q=0= sin‘l% ..(1.9)

2. Spherical Pendulum:

The motion of a particle constrained to move on the surface of the sphere of radius ‘a’,
can be described in terms of Cartesian coordinates x, y and z. The relation is

x2+y?+2z%=a?
Only two coordinates are independent.

Let us introduce,

_x Y
‘h—a an QZ—a
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Then,q3 = ’# =J1-q¢%—-¢> ..(1.10)

Hence, g3 is not an independent coordinate.

The Cartesian coordinates are not convenient in this case because of the spherical
symmetry and hence spherical polar coordinates are used. Here, r = a = constant

Fig. 1.5 — Constrains on a simple pendulum

The generalized coordinates willbe g; = 8 and g, = ¢

-1 Z
g, = 0 = cos 1;

1Y

Therefore, _
q; = ¢ =sin” <

. (111)

3. Inclined Plane:

Consider a disc rolling down an inclined plane without slipping. We required two
coordinates to specify the position of any point on the rim. The disc has translation and
rotational motion. We can use both Cartesian and polar coordinates.

Fig. 1.6 — Generalised coordinates of a disc rolling down an
Inclined plane without slipping

Any point P can be located by giving the position of the centre of disc O;or the point
of contact O from reference point O and the angle made by the radial line with some fixed
line.
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The equation of constraints are, z=0and [ =./x? + y? ,where [ is the distance
travelled by the disc down the plane.

For spherical polar coordinates @ =0 and O,P = constant are the equation
of constraints. Thus, [ and 6 are the proper generalized coordinates for this system.

» The inverse transformation equations can be written as
qj = q; (X1, Y1, Z1, X2, Y2, Z2) won XN, YN Zns t)
q; = q;(F, 7y Ty ) - (1.12)
Where,j = 1,2, ...... n

, —— , . . d
» The time derivatives of the generalized coordinates g = d—z are called the

generalized velocities.
System Point and Configuration Space:

The determination of the motion of a single particle in three dimensions is a
mechanical problem. The mechanical problem involving two particles, every particle being
described by a set of three coordinates, can be reduced to a single particle problem simply
by considering that the single particle moves in a six-dimensional space. Thus, in general, a
problem involving N-particles can be treated as one of a ‘Single Particle’ moving along a
trajectory in 3N dimensional space. This space is called ‘Configuration Space’ and the single
particle as ‘System Point’ in ‘Configuration Space’ is called the motion of the system
between any two given instants. Configuration space has no necessary connection with the
three-dimensional space.

D’Alembert’s Principle:

Consider a system described by ngeneralised coordinates q;(j = 1,2, ...... n).
Suppose the system undergoes a certain displacement in the configuration space in such a
way that it does not take any time. Such displacement is called virtual displacements
because they do not represent actual displacements of the system. Since there is no actual
motion of the system, the work done by the forces of constraint in such a virtual
displacement is zero.

Now, suppose the system is in equilibrium, i.e. total force on every particle is zero.
Then work done by this force in a small virtual displacement §7; will also vanish.

dw = z 8% =0 ..(113)
i

Let this total force be expressed as sum of applied force ﬁia and force of constraints

fi - Then equation (1.13) becomes
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Zﬁia-af; +2ﬁ-5ﬁ- -0 . (1.14)
i i
Let us assume that the virtual work done by the force of constraints is zero.
Zfi 5% =0 .. (1.15)
i

Equation (1.15) will not hold if frictional forces are present. This is because the
frictional forces act in a direction opposite to that of the displacement.

The principle of virtual work states that, virtual work done by the applied forces
acting on a system in equilibrium is zero, provided that no frictional forces are present.

Hence,z: Ff- 67 =0 ..(1.16)
i

The equation is termed as principle of virtual work. To interpret the equilibrium of
the systems, D’Alembert adopted an idea of a reversed force. He conceived that a system

will remain in equilibrium under the action of a force equal to the actual force ﬁiplus a
reversed effective force ﬁi . Thus,

Fi+(—p) =0

= 2>

Fi—p;=0 .. (1.17)

Thus, the principle of virtual work takes the form
Z(ﬁi —p;) 6% =0 ..(1.18)
i

Equation (1.18) is the mathematical statement of D’Alembert principle. In this

equation all forces 17"1- are the applied forces. The forces of constraints do not appear in this
equation.

> We have,

. aq; . .
Where, q; = 6_1,“] are called the generalized velocities.
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» The virtual work done by force by forces ﬁi in terms of virtual displacement
i
-3 (3 52)
= ' i 3, aj

i

J
i

where, Q; = ZFL- a
J

87, is given by

i
Here, Q;is called the generalized force
Lagrange’s Equation:

The coordinates transformation equations are

7, = 75(q1, Gop eor ven oo Gn, t)
dﬁ' _ aﬁ dq1 N aﬁ dqz aﬁ dt
" dt dq, dt  dq, dt 7 at dt
5=y O, OF 1.19
vl - : aq}q] at "'( " )
)

An infinitesimal displacement §7; can be connected withdq; as,

57 Z 01t 5o+ s,
T, = —_— q —_—
L i 6q1 J 6t

But last term will be zero because in virtual displacement only coordinate
displacement is considered and not that of time.

N
d T;

6,_)1 -

54 ..(1.20)

Now, D’Alembert principal is
Z(ﬁi _B)-6% =0 (121
i

Using equation(1.20) in (1.21), we get
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Zﬁ 592t 5q. = 0
(F; — pi) (7qj q; =

67‘1 67‘1
Fl pl =0 ..(1.22)

Now, we define the component of generalized force as,

zﬁ- o ..(1.23)

i

Using equation (1.23) in (1.22), we get

AL
§ Qj 6q; — E bi5—6q; =0 .. (1.24)
7 7 00

Let us evaluate the second term of equation (1.24) as follows

> 07 2 07
pi 5 6q; :Emiri'a_q 8q;

i, ] J

~ L \act\"" ag;) T M e \ag; ) 0

ij
_Z d 5 6?1 S d (')ﬁ s 1.25
=2 I m;v; - aq —m;v; at\3q; q; ..(1.25)
I"]
pu,  L(9R)_ %% .. (1.26)
©odt aq, aq;

Also differentiating equation (1.19) with respect to ¢, , we get

v, o7,

S (127
34, ~ o4, (1.27)

Putting equations (1.26) and (1.27) in equation (1.25), we get
Z (')rl z d . (’)ﬁ- L d arl P
Pi: aq, ac\"" aq; ) T M ae\aq, )J 0V
iJ
- 2l@ig |\ Zamet ) o | Zamet o
dt aq, 2T ag \ L2 )|°Y

With this substitution equation (1.24) becomes
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aoT
5 z 5q; =0 (128
fo 4G~ [dt(aq,) aq,} 1 (1.28)
1 2
Here,zzmivi =
i

Where, T represents the total kinetic energy of the system. Now, Equation (1.28) can be

written as,

d [dT\ oT o — o
t\aq;) ~ aq; — Q|04 =

Since, the constraints are holonomic, q;j are independent of each other and hence to satisfy

above equation the coefficients of each §¢; should separately vanish, i.e.

d (9T oT _ L2
dt\dg; aq,-_Qf - (1.29)

The equations are valid in the case of conservative as well as non-conservative

forces.These equations are called Lagrange’s equations.

N
For a conservative system, forces F; are derivable from potential function V.

w F=-V.V= v 1.30
Ri=-Vi = .. (1.30)

Then generalised force can be expressed as,

0 _Za arl Z v aﬁ.
J . aqj

v o7 v

o7, 9q; g,
Q== .. (1.31)

Hence, equation (1.29) becomes,

d(&T) or v

dfor\ oT-V)
ACET dq;

L d(a(T-V)\ oT-V)
'E( a4, >_ dq;
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Since V is not a function of qj. TakingT —V =1L, where L , is called the

Lagrangian.Hence for the conservative system,

d (oL aL_O 132
dt\dq;) 9dq; - (1.32)

Equation (1.32) is known as Lagrange’s equations of motion for conservative system.
Importance of Lagrangian Formulation:

The derivation of Lagrange’s equations for a system is equivalent to Newton’s
equation of motion. The Lagrangian formulation of mechanics is only an alternative and
equivalent formulation. The Newtonian and Lagrangian equations of motion are the second
order differential equation of motion which describe the nature of motion.

In the Newtonian approach, we are concern with the applied forces acting on a
system. This force accelerates the system. The forces are due to external agencies, which
produced the acceleration in the body. The resulting accelerated motion is the effect of the
force.

In Lagrangian approach, we consider the kinetic and potential energies of the
system. The concept of the forces does not involve directly. This is the difference between
the two formulations. The kinetic and potential energies are scalar functions and invariant
under coordinate transformations. These transformations include the transformation from
the Cartesian coordinates 7; to the generalised coordinates q;- In such transformation, it is

easier to deal with scalar quantities than vector such as force, momentum, torque etc.,
which are involved in the Newtonian formulation.

Another difference is that in some problem it may not be possible to know all the
forces acting on the system. But the expressions for the kinetic and potential energy may be
given.

Hence, the Lagrangian formulation is more useful.
A General Expression For Kinetic Energy:

The kinetic energy of the system is given by

1 2 1 2
T = zzmiri = zzmivi ..(1.33)
i i

Now, we have
7= ﬁ'(q]', t)

P N O OR 1.34
T = .3, q, 3t ..(1.34)
)
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Squaring above equation, we get

2 _ (’)ﬁ 67‘1 o (’)n 613_ (aﬁ-)

L= + 2 ..(1.35
J

(’)q] (’)q f

Using equation (1.35) in (1.33), we get
FL- 61"1 ) or; 61’1 i 61’1
= 2 Z ‘99, 04 ‘W”Z Zml a4 zzml

jk J

Where,
_ 12 6771 0771-\
G =3 . mlaq]' 0qy
l
b z 6771- (')rl

()

When transformation equations are independent of time, then bj =0,and ¢c=0

"

AT = z el .. (1.38)
jk

Illustration:Consider a double pendulum as shown in fig.1.7

X e LLLLLL L

H
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|
1
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|

Fig. 1.7 — Double pendulum

Let [; and [, be the length of first and second pendulum respectively. Let us assume
that the pendulums move in the XY plane only. Let 8,and 6,be the angular displacements of
first and second pendulum respectively. The generalised coordinates are g; = 8, and
g2 =0,
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Let (x4, 1) and (x;, ¥,) be the coordinates of two bobs. Hence from fig. we have,

X1 = llsingl
v, = lcos6;

xz = llsinel + lzsinez (139)
vy, = lc0s01 + l,cos6,
Differentiation of equation (1.39) with respect to time, we have
5C1 = llsinél \I
- y1=—heost .. (1.40)
X, = l1c056,0, + l,c050,0,
}./2 = _llsinglél - lzsinezéz
Now, kinetic energy T is given by
1 . 1 .
T = Eml(xl2 +y3) + Emz(xzz +y2) .. (141)

Substituting the values of equation (1.40) in equation (1.41), we have
1 2020 A2 4 [2cin2p A2
T = Eml(llcos 0,01 + lisin 9191)

1 . . . .
+ Emz(lfcoszelef + 12c0s%0,02 + 21,1,c050,c056,6,0, + 1?sin*0,0%

+ 125in%0,02 + 21,1,5in0,sin6,6,6,)
1 . 1 . ..
" T = E(ml + mz)l%glz + Emzlggzz + m2l1l2COS(91 - 92)9192 (142)
This expression can also be obtained by using equation (1.40)

7= audsi
7k

= ap,0,07 + (ap,6, + a0,0,)616; + ag,,63 .. (143)
Where,
1 ax;\>  (0yn\°] 1 0x,\2  (0yy\°
0.0, = 3™ [(a_el) +(a_91> tam (a_el) +(a—91)

B 1 dx,0x, 0y, 0y, 1 dx,0x, 0y,0y,
6:6: = 30.0. = 3™ |50 56, 36, 96,1 * 22|36, 06, © 96, 06,

1 axl 2 ayl 2 1 axz 2 ayz 2
%60, = 3™ [(@) +(a_e>2> Tam (@) +(a_92)

Substituting the values of derivatives, we get
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1
ag,6, = 5 (my + mp)l§ ]
1
ag,p, = Ag,p, = Emzlllzcos(e1 - 6,) ? . (1.44)
ag,0, = Emll% J

With this substitution in equation (1.43), we get same expression of K.E as

T—l 2 2y L 2, 2 145
—Zml(x1+y1)+2m2(x2+y2 ... (1.45)

Symmetries and the Laws of Conservation:

The study of conservation theorems for a system in motion provides the constants of
motion. The knowledge of which helps in describing the motion of the system. The
Lagrange’s equations of motion are very appropriate for recognizing the constants of
motion.

Lagrange’s equations of motion are second order in time. To solve them completely,
for a system of n degrees of freedom, 2n constants of integrations will be involved which
can be determined if n initial values for g; and n initial values for g; are known. It is not
always possible to integrate every equation of motion so as to get complete solution in
terms of known functions. But in such case it is possible to extract sufficient information
about the physical nature of the motion of the system without solving the problem
completely through the constants of motion.

On considering the symmetries of the system, we can obtain first integrals of the
equations of motion. The first integrals are constants of motion. These are the first order
differential equation of the type

f(q1,q2, «on o Qn> Q1) Qs v oo qn,t) = constant .. (1.46)
The first integrals provide a lot of information regarding the system.

Consider a system of particles in a conservative force field. Then, potential energy V
depends only upon the position.

oL AT -V) 3 ~"1 L, o,
a—x;a—xi-aszi("i T+ A)
L
oL _
a_xizmixi=pxi

Where, py,is the x- component of the linear momentum of the ith particle.

We can generalize this result and define the generalized momentum by the formula

Dr P M Patel, V.P. & R.P.T.P. Science College, V.V.Nagar Page 15



oL

5 (147)

pj

Where, p; is called the canonical or conjugate momentum.

If q; is linear displacement the p; represents the linear momentum. But, if g;

represent an angle then p; represents the angular momentum.

If we consider a charged particle moving in an electromagnetic field, then the
Lagrangian is defined as

1 502 S oS
L=Em|1'”| —qP+qA-T ..(1.48)

Where, @ is scalar potential and A is a vector potential. Differentiate equation (1.48)
with respect to x , we get

Dy = mxX + qA, ..(1.49)

li is not the useful kinetic momentum mx but has a contribution of gA, from the
electromagnetic field.

Lagrange’s equations for a conservative system assume a simple form similar to
Newton’s equations of motion as follows

d(oLy oL .
dt\dq;) 9dq;
d oL
()= aq;
. o(T—-V) aT oV (1.50)
pj aq, dq;,  dq, o (1.

For conservative system, the potential energy depends only on position coordinate

q;- Hence, ;—qT_ = 0. Therefore, above equation (1.50) becomes
J

Cyclic or Ignorable Coordinates:

The LagrangianL is a function of g; and ¢g; . If anyone coordinate, say q; is absent in the

expression of Lagrangian L , then
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oL _ 0
qy

The equation of motion corresponding to variable g, becomes

d((’)L)_O
dt\aq,)

Integrating above equation, we get

daL
—— = p;, = constant ..(1.52)
0qx

Thus, when coordinate q; does not appear in the Lagrangian function L , then
corresponding linear momentumpy, is a constant of the motion. Such coordinate g is said

to be cyclic or ignorable coordinate.
For conservation of energy following two conditions must be satisfied.

(i) The potential energy must be a function of coordinate only and not that of a
velocities,

(ii) The constraints do not change with time, i.e. they are independent of time and
the equations of transformation to generalised coordinates do not involve time

explicitly.
L= L(q;,4))
Its total time derivative will be
dL oL dgq; oL dq;
SN2 N T .. (1.53)
J j
But, Lagrange’s equation of motion is
d [ JdL oL 0
dt\dq;) 9dq;
0L d (0L 154
. 34, = 34, ..(1.54)

Putting this value of ;—: from equation (1.54) in equation (1.53), we get
J

dL z d oL\ oL dq;
]

'dL_Zd . 0L _Zd o o(T-V)
Car Laat\Vaq,) T Liac\V ™ ag;

j j
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aL z d (. 0T o av 158
dt ~ Ludc\Vag, ~ Vag, - (1:55)
]

. v .
But, for conservative system, — = 0. Hence above equation (1.55) reduce to

04;
dL d .
@ Zj a (4p) =0

d :
oo % Zq]p]—L :0
J

Z qjpj — L = constant = H ... (1.56)
J

The quantity H is one of the first integrals of equation of motion and it represents
the total energy of the system.

When constraints are independent of time i.e. equation of transformation do not
involve time explicitly and constraints are holonomic, then kinetic energy can be expressed
as homogeneous quadratic function of generalised velocities and therefore,

7= audji
Tk

Euler’s theorem states that if f is a homogeneous function of order n of a set of
variableq; , then

But, here n = 2 ,so that
z . oT o7
qdj5-—=
o aq]-
Ji
z qjp; = 2T ..(1.57)
j

Thus, using above equation (1.57) in equation (1.56), we get
H=2T—-L=2T—-(T-V)
H=T+V=E ..(1.58)

Which shows that H equals the total energy and is conserved.
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It may happen that H be a constant of motion but not the total energy.

Suppose the transformation equation involve time, then

H+T+V
d .
But, E[qufpf - L] =0
dH 0
dt
H = Constant ..(1.59)

~ His still conserved i.e. it continues to be a constant of motion. Therefore,
identification of H as a constant of motion and as the total energy are two separate matters.

ILLUSTRATIONS:
(1) Motion of a free particle:

Consider the motion of a particle due to force F having componentsF,, F, and F, along
the three axes of the Cartesian coordinate.

Hence, the kinetic energy is given by
T = %m(a’cz + y2 + 2?) ... (1.60)
And, the potential energy for free particle is,
V=0
In this case, the LagrangianL =T -V =T

The equation of motion can be written as

d (0T 6T_0 61
dt\dq;) dq; - (1.61)

Here, j = 1,2,3. Let us consider the generalised coordinate q; = x,q, = yand g3 = z

The Lagrange’s equations of motions are

d (6T> oT _ 0 d (6T> oT _0 P d (GT) oT _
de\ox) " ax 7 dt\ay) "oy~ M a\ez) "6z T
In this case,
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oT 9T _aT

= =—=0and
ox ay o0z -

or_ . or__ . oT_

% =mx, ay =my an Ep =mz

Hence, the equations of motions are,

d(f)T)_d( S —mi
dt\ox) dr Y T T

Similarly,

my = FE,and mZ = F,
These are Newton’s equations of motion.
(2) Motion of bead along rotating wire:

Consider a bead sliding along a uniformly rotating wire in a force-free space. The
transformation equations relating the Cartesian and polar coordinates of the bead are

x =rcosf = rcoswt
and, y = rsinf = rsinwt
Where, w is the constant angular velocity of the wire.
Kinetic energy T is given by

1
T = Em(xz + yZ)

1 .
= Em(f”z +126?)

1
T = Em(f"z + r2w?) .. (1.62)
In this case, the LagrangianL =T -V =T

Because the potential energy V = 0

Thus, we find that T is not a homogeneous quadratic function of velocities only. The
equation of motion can be written as

d(oLy oL .
dt\dq;) 9dq;

Here, choosing the generalised coordinateq; =7 ,and L =T

Above equation becomes,
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4 ("’_T> Ty
dt\or/ or
mi —mrw? =0
F=rw? ..(1.63)
This is the familiar expression of the centripetal acceleration.

(3) Atwood’s machine:

Atwood’s machine consists of two masses m,; and m, tied together by a light cord
oflength [ as shown in figure 1.8 The cord passes round a light frictionless pulley and the

two masses hang on the two sides of the pulley.

'4

N

.4;_._
i
|

I-x

"""" A

v
m,g

Bq-—m—-—-

Fig. 1.8 — Atwood’s machine

Here, only one variable x is independent and [ is constant. The kinetic and potential
energies of the system are given by

1
T = E(ml + mZ)J'CZ
and, V=-mygx —myg(l —x)
The LagrangianL =T =V

1
L= > (my + my)x% + mygx + myg(l — x) .. (1.64)

The Lagrange’s equation of motion is
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d (0L oL _ 0
dt\dq;) 9dq;
Here, choosing the generalised coordinate q; = x
o (GL) JdL _
dt\ox) ox
d .
% [(my + mp)x] —myx —myg(=1) =0
& (mp+my)¥—(mg—my)g =0
m; —m,
X=—- ... (1.65)
my +m,
This is an acceleration of Atwood’s machine.

Integrating above equation twice, we get

X =X + vt + z (u) gt? ..(1.66)
2\my +my

This is the displacement of Atwood’s machine.
(4) Spherical Pendulum:
A spherical pendulum is a simple pendulum which is free to move through the

entirespace about the point of suspension as shown in figure 1.9

P4

Fig. 1.9 — Spherical pendulum

The bob of a pendulum moves on the surface of a sphere whose radius is equal to
the length of the pendulum. The spherical polar coordinates are suitable to locate the

position of the bob. Here, [ is constant and 0, @ are variables.

The velocity of the bob is given by
D =10éq + L sinfPé,

The kinetic energy becomesT = %mvz

Dr P M Patel, V.P. & R.P.T.P. Science College, V.V.Nagar Page 22



1 . .
“T= Em(1292 + 2sin?00?)
The potential energy  V = —mgl cosf

The LagrangianL =T =V

1 202 1 2 cin20mh2
~ L :Eml 0 +Eml sin“09- + mgl cosb .. (1.67)

The generalised coordinates are 8 and @

Therefore, the Lagrange’s equation of motion corresponding to 8 and @ are

d ((’)L) dL _ P
dt\og/ 06 - (1.68)
And
d (6L> oL 169
at\ag) 90 - (169)
The solution of equation (1.68) is
d . .
e [mi26] — mi?sind cosd ®? — mgl sinf = 0
~ml?0 = ml?sind cosOB? + mgl sinf .. (1.70)
The solution of equation (1.69) is
d .
E(mlzsinze 0)=0
. ml?sin?6 @ = 0 .. (1.71)

Equations (1.70) and (1.71) are the equation of motion of spherical pendulum. Variable @ is
ignorable, hence its corresponding momentum is conserved.

oL 2020
. P = % = ml*sin“00Q = constant (1-72)

Substituting the value of @ from equation (1.72) in equation (1.71)

Po”

~ ml2 @ = mgl sinf 12sinf cos§ ——
ml® @ = mgl sin + ml*sinf cos 214 5in®0

N Zcos0
~ ml? @ = mglsinf + Pe

_ ..(1.73
ml2sin36 ( )

oL
Since, — =0
't
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The total energy is given by
i

The generalised coordinates are 8 and @. Hence, above equation becomes,

.0L . 0L
" EZQ—.+®—.—L
00 (340

. .. . 1 . 1 .
~ E = Oml*0 + @ ml?*sin?6¢ — Emlzez — Emlzsinze(z)z —mgl cos6

1 . 1 .
~E = Emlzez + EmlzsinZGQZ + mgl cos6

~ E=T+V = constant ..(1.75)
It is the constant of motion.

The expression of total energy can be rewrite as,

2

1 . 1
E = —ml?0? + =ml?sin’6 Po

—_— l 0

2 2 m2l4sin*6 +mgt cos

1. Ps
W E=-ml?6? + ————+ l 0

2™ 2mlizsinzg 908
~E=T+V, .. (1.76)

__ pj : . . o
Where, V, = pmr—yy + mgl cos@ s the effective potential energy and it is

depends only on 6.

> If the pendulum is restricted to move only in one plane, then @ = 0 . Theequation of
motion (1.70) reduce to

ml?6 = mgl sind
. 9\
g — (T) sinf =0 (177
This is equation of motion of simple pendulum.

Velocity Dependent Potential of Electromagnetic Field:

The Lagrange’s equation of motion is

d (oL aL_O L8
dt\dq;) 9dq; - (1.78)
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If the system is not conservative then the generalize forces are expressed as
0 = 0U+d au (1.79)
77 aq;  de\dg; A
Where, U (q g j) is called generalised potential or velocity dependent potential.

This type potential involve in case of the electromagnetic forces acting on moving charges.

The Maxwell’s equations are,

. . 0B )
VXE+—-=0
.. (1.80)

Here, B = UoH is magnetic induction and the quantity EOE = D is called the electric

displacement.
The force on a charged particle having charge g and moving in an electromagnetic

field is given by
F=qlE+ ¥ xB| ..(1.81)

This force is known as the Lorentz force.

We know the properties if gradient, divergence and curl. In which we know that,

V-Vx4A=0 ..(1.82)
But, one of the Maxwell’s equations is
V-B=0 ..(1.83)
Comparing equations (1.82) and (1.83), we get
.. (1.84)

B=Vx4
Where 4 is called a magnetic vector potential. With this substitution for B in the

following equation, we have
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E+M—0 1.85
| = ..(1.85)

. VX
We have another property of gradient and curl is,
VxVg=0 ..(1.86)
Comparing equation (1.85) and (1.86) we get,
E+ 04 _ Vo
ot
Here, (—) sign indicates that potential decreases away from charged particle.
. E=-Vp 04 1.87
“ E= o .. (1.87)
Now, the Lorentz force can be written as,
N Y S
F=gq —V®—§+vaxA ..(1.88)

Now, substituting the values of V(b and TXVXA , the x - component of the

Lorentz force is given by,
0 L o= d(od .,
Fo=q [_&m — - A} - %{ﬁ (4- v)}] . (1.89)

The scalar potential @ is independent of velocity. Hence above equation can be

written as,

0 . dl o S

E, = q[—a{(b—A-v —E{a—vx{Q—Av}}]
0 S d 0 5

. Fx=—g{q((b—A-v)}+%a{q(®—A-v)}

- oU d ou 190

c = —a+aa ..(1.90)

Here,
U=q®—qA v ..(1.91)

Where, U is the generalised potential energy
Hence, the Lagrangian for a charged particle moving in an electromagnetic field is

given by
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L=T-U=T—q0+qA-¥ ..(1.92)
Rayleigh’s Dissipation Function:

If the force acting on the systems is derivable from a potential, then Lagrange’s

equation becomes

d (0L oL 193

Where L contains only those forces that are conservative while Q; includes the

forces that are not derivable from a potential like frictional force.

When the frictional force is proportional to the velocity, then x — component of the

force is given by
Fry = —ky vy ..(1.94)

Where, k, is the x — component of the frictional force per unit velocity in x -

direction.

This type of forces are derives from Rayleigh’s dissipation function F defined by

1 2 2 2
F = EZ(kxvix + kyvZ, + k,v? .. (1.95)
i
Where,i = 1,2, ......... n

Now, Fr=-V,F ..(1.96)
Where,

- .92 4 .0

Vy=l—+ j—+k .. (1.97)

This is the vector velocity differential operator.

To explain the physical significance of Rayleigh’s dissipation function. Let us calculate
the work done by the system against friction as

o dWr = —(kavx + jkyvy, + I?kzvz) . (fvx +jv, + Evz)dt
oo dWr = (kyvi + kyv2 + k,v2)dt

aw,
d_tf = kv + kyvj + k,v}
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AWy

- =2F ..(1.98)

Thus, the rate of dissipation of energy by friction is equal to twice Rayleigh’s

dissipation function.

The component Q; of the generalised force arise due to frictional force and is given

by
j i fi aqj
2 Q) = ZV?GF"— ZV:FG;"
i Q] - v aq] - v aq'J
Q= -2 (1.99)
Using equation (1.99) in equation (1.93), the Lagrange’s equation of motion is given
by
d(aL) 6L+6T_0 (1.100)

Thus, if frictional force is acting on the system, we must specify two scalar functions,
the LagrangianL and Rayleigh’s dissipation function F to derive the equation of motion.
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Question Bank

Multiple choice questions:
(1) The degree of freedom for a free particle in space are

(a) one (b)two
(c )three (d) zero
(2) The number of independent variable for a free particle in space are
(a) zero (b) one
(c)two (d) three
(3) The degree of freedom for N particles in space are
(a) 2N (b)3N
(c)N (d) zero
(4) The number of independent variable for a free particle in space are
(@) N (b) 2N
(c)3N (d) zero
(5) constraints are independent of time.
(a) Holonomic (b) Non-Holonomic
(c )Scleronomous (d) Rheonomous
(6) constraints are time dependent.
(a) Holonomic (b) Non-Holonomic
(c)Scleronomous (d) Rheonomous

(7) The generalized coordinates for motion of a particle moving on the surface of a
sphere of radius ‘a’ are

(a) aand 6 (b)aand ¢
(c)oand ¢ (d)0oand ¢
(8) The Lagrangian equations of motion are order differential equations.
(a) first (b) second
(c) zero (d) forth
(9) The Lagrange’s equations of motion for a system is equivalent to equations
of motion.
(a) Newton’s (b) Laplace
(c) Poisson (d) Maxwell’s
(10) The Lagrangian function is define by
@ L=F+V (b)L=T -V
(c)L=T+V (d)L=F—-V
(11) The Hamiltonian function is define by
(b)) H=F+V (b)H=T -V
(c)H=T+V (d)H=F—-V

Short Questions:

Define constraint motion.

What is degree of freedom?

What is virtual displacement?

Define Holonomic and non-holonomic constraints.

Define Scleronomous and Rheonomous constraints.

State the D’Alembert’s principle in words.

Werite the Lagrange’s equation of motion for conservative system.
Werite the Lagrange’s equation of motion for non-conservative system.
Define cyclic coordinates.

W N AWM
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10.
11.

Construct the Lagrangian for Atwood’s machine.
Construct the Lagrangian for Spherical pendulum.

Long Questions:

1.

10.
11.
12.

13.

14.

15.

16.
17.

What are constraints? Explain, giving examples, the meaning of holonomic and
nonholonomic constraints.

Explain the meaning of Scleronomous and Rheonomous constraints. Give
illustrations of each.

Is the Lagrangian formulation more advantageous than the Newtonian formulation?
Why?

What do you understand by cyclic coordinates? Show that the generalized
momentum corresponding to a cyclic coordinate is a constant of motion.

Explain the term ‘virtual displacement’ and state the principle of virtual work.
Describe the use of Rayleigh’s dissipation function.

Define the Hamiltonian. When is it equal to the total energy of the system? When is
it conserved?

What is meant by a configuration space? How is this concept used to describe the
motion of a system of particles?

What are constraints? Discuss holonomic and Non-holonomic constraints with
illustration.

Discuss various types of constraints with illustration

Discuss the concept of generalized coordinates with illustrations.

Discuss the virtual work done for motion of a system and derive the mathematical
statement of D’Alembert’s statement.

Derive the Lagrange’s equation of motion for a conservative system from
D’Alembert’s principle.

Derive the general expression of kinetic energy and find the kinetic energy of double
pendulum from it.

What is cyclic coordinates? Show that total energy is conserved.

Construct the Lagrangian of Atwood machine and derive its the equation of motion.
Construct the Lagrangian of spherical pendulum and derive its the equation of
motion. Also show the conservation of total energy and constant of motion.
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