T.Y.B.Sc. : Semester - V (CBCS)

US05CMTH24

Metric Spaces and Topological Spaces

[Syllabus effective from June, 2020]

Study Material Prepared by:
Mr. Rajesh P. Solanki
Department of Mathematics and Statistics
V.P. and R.P.T.P. Science College, Vallabh Vidyanagar

US05CMTH24-UNIT: II

1. Topology

Topology

Let X be a non-empty set. A collection \mathcal{T} of subsets of X is said to be a topology for X if the following properties are satisfied.

(i) $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$

(ii) If $G = \{G_{\alpha} / \alpha \in \Lambda\}$ is an arbitrary collection of members of \mathcal{T} , then

$$\bigcup_{lpha\in\Lambda}G_lpha\in\mathcal{T}$$

(iii) If $G = \{G_i \ / \ i = 1, 2, \dots, n\}$ is a finite collection of members of $\mathcal T$ then

$$igcap_{i=1}^n G_i \in \mathcal{T}$$

Every member of \mathcal{T} is called a \mathcal{T} -Open set and the set X with the topology \mathcal{T} defined on it is called a topological space which is denoted by (X, \mathcal{T}) .

2. Indiscrete Topology

Indiscrete Topology

For a non-empty set X the topology $\{\emptyset, X\}$ is called the indiscrete topology and usually it is denoted by \mathcal{I}

3. Show that indiscrete topology satisfies all the conditions for becoming a topological space

Proof

Let X be a non-empty set. Then the indiscrete topology for X is $\mathcal{I} = \{\emptyset, X\}$. Now we show that \mathcal{I} possesses all the properties to become a topology.

By the definition of \mathcal{I} we have

$$\emptyset \in \mathcal{I}$$
 and $X \in \mathcal{I}$ ---- (i)

Now the union of an arbitrary collection of members of \mathcal{I} is either \emptyset or X. Therefore \mathcal{I} contains union of arbitrary collections of members of \mathcal{I} .

Finally, intersection of any collection of members of \mathcal{I} is either \emptyset or X.

Therefore \mathcal{I} contains intersection of finite collections of members of \mathcal{I} .

Thus, \mathcal{I} possesses all the properties for becoming a topology.

4. Discrete Topology

Discrete Topology

For a non-empty set X the collection of all the subsets of X is called the discrete topology and usually it is denoted by \mathcal{D}

5. Show that discrete topology satisfies all the conditions for becoming a topological space

Proof

Let X be a non-empty set. Then the discrete topology \mathcal{D} for X is the collection of all the subsets of X.

Now we show that \mathcal{D} possesses all the properties to become a topology.

By the definition of \mathcal{D} we have

$$\emptyset \in \mathcal{D}$$
 and $X \in \mathcal{D}$ ---- (i)

Next consider an arbitrary collection $\{G_{\alpha} / \alpha \in \Lambda\}$ of members of \mathcal{D} . As union of subsets of a set is also subset of that set, we have,

$$igcup_{lpha\in\Lambda}G_lpha\subset X$$

Hence,

$$\bigcup_{\alpha \in \Lambda} G_{\alpha} \in \mathcal{D} \quad --- \text{ (ii)}$$

Finally, consider a finite collection $G = \{G_i \mid i = 1, 2, ..., n\}$ of members of \mathcal{D} . As intersection of subsets of a set is also subset of that set, we have,

$$igcap_{i=1}^n G_i \subset X$$

Hence,

$$\bigcap_{i=1}^{n} G_i \in \mathcal{D} \quad --- \text{ (iii)}$$

From (i),(ii) and (iii) it follows that \mathcal{D} possesses all the properties for becoming a topology.

6. What are trivial topologies on a non-empty set?

Trivial Topologies:

The following topologies are defined for every non-empty set and collectively they are called Trivial Topologies.

Discrete Topology For a non-empty set X the collection of all the subsets of X is called the discrete topology and usually it is denoted by \mathcal{D} Indiscrete Topology For a non-empty set X the topology $\{\emptyset, X\}$ is called the indiscrete topology and usually it is denoted by \mathcal{I}

7. U-Open Set

U-Open Set:

A set $G \subset R$ is said to be \mathcal{U} -open set

- (I) if $G = \emptyset$ or
- (ii) if $G \neq \emptyset$ then for each $p \in G$ there is an open interval I such that

 $p\in I\subset G$

8. Usual Topology of R

Usual Topology of R:

The family \mathcal{U} of all the subsets G of R as described below is called the Usual Topology for R.

- (I) $G = \emptyset$ or
- (ii) if $G \neq \emptyset$ then for each $p \in G$ there is an open interval I such that

 $p\in I\subset G$

9. Show that usual topology of R possesses all the properties for becoming a topology for $\mathbb R$

Answer:

The usual topology \mathcal{U} for R is defined as a family of subsets G of R as described below,

- (i) $G = \emptyset$ or
- (ii) if $G \neq \emptyset$ then for each $p \in G$ there is an open interval I such that

$$p \in I \subset G$$

Let us show that \mathcal{U} possesses all the properties to be a topology for R.

(1) By the definition of \mathcal{U} we have $\emptyset \in \mathcal{U}$

Also for any $p \in R$ and any r > 0 we have,

$$p\in (p-r,p+r)\subset R$$

Therefore, $R \in \mathcal{U}$.

Thus, we have, $\emptyset \in \mathcal{U}$ and $R \in \mathcal{U}$

(2) Next, consider an arbitrary family $\{G_{\alpha} / \alpha \in \Lambda\}$ of memmbers of \mathcal{U} .

If $p \in \bigcup_{\alpha \in \Lambda} G_{\alpha}$ then for some $\alpha_p \in \Lambda$ we have

$$p \in G_{\alpha_p}$$

As G_{α_p} is a non-empty \mathcal{U} -open subset of R there is some open interval I such that

$$p \in I \subset G_{\alpha_p}$$

This implies that,

$$p \in I \subset \bigcup_{lpha \in \Lambda} G_lpha$$

Hence,

$$\bigcup_{lpha\in\Lambda}G_lpha\in\mathcal{U}$$

(3) Finally consider a finite family $\{G_1G_2,\ldots,G_n\}$ of members of \mathcal{U} .

If
$$p \in \bigcap_{i=1}^n G_i$$
 then $p \in G_i$, $\forall i = 1, 2, \ldots n$.

As each G_i is a non-empty member of \mathcal{U} , there must be some I_i such that,

$$p \in I_i \subset G_i, \ \forall i = 1, 2, \dots \ n$$

If we take $I = \bigcap_{i=1}^{n} I_i$ then I is an open interval containg p such that $I \subset I_i$. Therefore,

$$p \in I \subset G_i, \ \forall i = 1, 2, \ldots n$$

Therefore,

$$p\in I\subset igcap_{i=1}^n G_i$$
 $igcap_i^n G_i\in \mathcal{U}$

Hence,

$$\bigcap_{i=1}^n G_i \in \mathcal{U}$$

From (1),(2) and (3) it follows that, \mathcal{U} is a topology for R.

- Let \mathcal{G} be a family of subsets of R as described below 10.
 - (i) $\emptyset \in \mathcal{G}$
 - (ii) If $G \neq \emptyset$ then $G \in \mathcal{G}$ if for each $p \in G$ there is a set $H = \{x \in R/a \leq$ x < b for some a < b such that $p \in H \subset G$.

Prove that \mathcal{G} is an unusual nontrivial topology of \mathbb{R}

Proof:

(1) By the definition of \mathcal{G} we have $\emptyset \in \mathcal{G}$

Also, if $p \in R$ then we have $H = \{x \in R \mid p \le x < p+1\}$ such that

$$p \in H \subset R$$

Therefore, $R \in \mathcal{G}$

(2) Next, consider an arbitrary family $\{G_{\alpha} \mid \alpha \in \Lambda\}$ of memmbers of \mathcal{G} .

If $p \in \bigcup_{\alpha \in \Lambda} G_{\alpha}$ then for some $\alpha_p \in \Lambda$ we have

$$p \in G_{\alpha_p}$$

As G_{α_p} is a non-empty member of \mathcal{G} , there is some subset $H = \{x \in R \mid a \leq x < b\}$ such that

$$p \in H \subset G_{\alpha_p}$$

This implies that,

$$p\in H\subset igcup_{lpha\in\Lambda}G_lpha$$
 $igcup_{lpha\in\Lambda}G_lpha\in\mathcal{G}$

Hence,

$$\bigcup_{\alpha\in\Lambda}G_\alpha\in\mathcal{Q}$$

(3) Finally consider a finite family $\{G_1G_2,\ldots,G_n\}$ of members of \mathcal{G} .

If
$$p \in \bigcap_{i=1}^n G_i$$
 then $p \in G_i$, $\forall i = 1, 2, \dots n$.

As each G_i is a non-empty member of \mathcal{G} , there must be some $H = \{x \in R \mid a_i \leq x < b_i\}$ such that,

$$p \in H_i \subset G_i, \ \forall i = 1, 2, \dots \ n$$

Let,

$$a = max\{a_1, a_2, \dots a_n\}$$
 and $b = min\{b_1, b_2, \dots b_n\}$

clearly

$$a_i \leqslant a \quad \text{and} \quad b \leqslant b_i$$

 $a_i \leqslant a \quad \text{ and } \quad b \leqslant b_i$ Therefore, if we take $H = \{x \in R \ / a \leqslant x < b\}$ then we have,

$$p \in H \subset G_i, \ \forall i = 1, 2, \ldots n$$

Therefore,

$$p\in H\subset \bigcap_{i=1}^n G_i$$

Hence,

$$igcap_{i=1}^n G_i \in \mathcal{G}$$

From (1),(2) and (3) it follows that, \mathcal{G} is a topology for R.

11. Let J be the set of all integers and \mathcal{J} be a collection of subsets G of J where $G \in \mathcal{J}$ whenever $G = \emptyset$ or $G \neq \emptyset$ and $p, p \pm 2, p \pm 4, ..., p \pm 2n, ...$ belong to G whenever $p \in G$. Prove that \mathcal{J} is a topology for J

Proof:

Here J is the set of all integers.

Therefore for every $p \in J$, we have

$$p, p \pm 2, p \pm 4, ..., p \pm 2n, \cdots \in J$$

Therefore,

$$J \in \mathcal{J}$$
 ---- (i)

Next, consider an arbitrary collection $\mathcal{G} = \{G_{\alpha} \mid \alpha \in \Lambda\}$ of members of \mathcal{J} .

If $p \in \bigcup_{\alpha \in \Lambda} G_{\alpha}$ then for some $\alpha_p \in \Lambda$, we have $p \in G_{\alpha_p}$

Since, $G_{\alpha_p} \in \mathcal{J}$, it follows that

$$p, p \pm 2, p \pm 4, \ldots, p \pm 2n, \cdots \in G_{\alpha_p}$$

Therefore,

$$p,p\pm 2,p\pm 4,...,p\pm 2n,\cdots \in igcup_{lpha \in \Lambda} G_lpha$$

Hence,

$$\bigcup_{\alpha\in\Lambda}G_\alpha\in\mathcal{J}\quad ---- \text{(ii)}$$

Finally, consider a finite collection $G = \{G_i \mid i = 1, 2, ..., n\}$ of members of \mathcal{J} .

If $p \in \bigcap_{i=1}^{n} G_i$ then $p \in G_i$, for every $i = 1, 2, \dots n$

Since, $G_i \in \mathcal{J}$, $\forall i$, it follows that

$$p, p \pm 2, p \pm 4, ..., p \pm 2n, \cdots \in G_i, \forall i$$

Therefore,

$$p, p \pm 2, p \pm 4, ..., p \pm 2n, \cdots \in \bigcap_{i=1}^{n} G_i$$

Hence,

$$\bigcap_{i=1}^{n}G_{i}\in\mathcal{J}$$
 ---- (iii)

From (i),(ii) and (iii) it follows that \mathcal{J} a topology for J, which is non-trivial topology also.

12. Coarser Topology and Finer Topology.

Coarser Topology and Finer Topologiey

If T_1 and T_2 are two topologies for a non-empty set X such that

$$T_1 \subset T_2$$

then topology T_1 is called coarser than the topology T_2 and T_2 is called finer than T_1 .

Collectively T_1 and T_2 are called comparable topologies.

13. Non-comparable topologies

Non-comparable topologies

If T_1 and T_2 are two topologies for a non-empty set X such that

$$T_1 \not\subset T_2$$
 and $T_2 \not\subset T_1$

then the two topologies are said to be non-comparable topologies.

14. Consider the topology \mathcal{G} on R where $G \subset R$ is \mathcal{G} -open if $G = \emptyset$ or $G \neq \emptyset$ and for each $p \in G$ there is a set $H = \{x \in R/a \leq x < b\}$ for some a < b such that $p \in H \subset G$. Prove that \mathcal{G} is finer than usual topology of R.

Proof

To show that \mathcal{G} is finer than usual topology \mathcal{U} we shall prove that $\mathcal{U} \subset \mathcal{G}$ Let $G \in \mathcal{U}$.

Therefore, G is \mathcal{U} -open in R.

In case $G = \emptyset$ then $G \in \mathcal{G}$

Now, if $G \neq \emptyset$ then consider any $p \in G$

As G is \mathcal{U} -open, there is some open interval I such that

$$p \in I \subset G$$

If I = (a, b) then we have $p \in (a, b)$.

Hence,

$$p \in [p, b)$$

If we take $H = \{x \in R/p \le x < b\}$ then, $p \in H \subset G$

Therefore,

$$G\in \mathcal{G}$$

Therefore,

$$\mathcal{U}\subset\mathcal{G}$$

Hence, \mathcal{G} is finer than \mathcal{U}

15. Closed Set

Closed Set:

Let (X, T) be a topological space. A subset A of X is called a T-closed set if there is a T-open subset G of X such that

$$A = X - G$$

16. If (X, \mathcal{T}) is a topological space and $\{F_{\alpha}/\ \alpha \in \Lambda\}$ is any collection of \mathcal{T} -closed subsets of X then prove that $\bigcap \{F_{\alpha}/\ \alpha \in \Lambda\}$ is a \mathcal{T} -closed set

Proof:

Let (X, \mathcal{T}) be a topological space and $\{F_{\alpha} \mid \alpha \in \Lambda\}$ be an arbitrary collection of \mathcal{T} -closed subsets of X

To prove that $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ is a \mathcal{T} -closed set we shall show that $X - \bigcap_{\alpha \in \Lambda} F_{\alpha}$ is a \mathcal{T} -open set.

First we note that for each \mathcal{T} -closed set F_{α} in the collection its complement $X - F_{\alpha}$ is \mathcal{T} -open.

Now by DeMorgan's Law,

$$X-\bigcap_{lpha\in\Lambda}F_lpha=igcup_{lpha\in\Lambda}(X-F_lpha)$$

As the RHS is an arbitrary union of \mathcal{T} -open sets, it is a \mathcal{T} -open set.

Therefore $X - \bigcap_{\alpha \in \Lambda} F_{\alpha}$ is \mathcal{T} -open.

Hence, $\bigcap_{\alpha \in \Lambda} F_{\alpha}$ is \mathcal{T} -closed.

17. If (X, \mathcal{T}) is a topological space and $F_1, F_2, ..., F_n$ are \mathcal{T} -closed subsets of X then prove that $\bigcup \{F_i / i \in J_n\}$ is a \mathcal{T} -closed set

Proof:

Let (X, \mathcal{T}) be a topological space and $F_1, F_2, ..., F_n$ be \mathcal{T} -closed subsets of X.

To prove that $\bigcup_{i=1}^{n} F_i$ is a \mathcal{T} -closed set we shall show that $X - \bigcup_{i=1}^{n} F_i$ is a \mathcal{T} -open set.

Now by DeMorgan's Law,

$$X - \bigcup_{i=1}^n F_i = \bigcap_{i=1}^n (X - F_i)$$

9

Also each $X - F_i$ is \mathcal{T} -open as each F_i is \mathcal{T} -closed.

Therefore $X - \bigcup_{i=1}^{n} F_i$ is \mathcal{T} -open as it is a finite intersection of \mathcal{T} -open sets.

Hence, $\bigcup_{i=1}^{n} F_i$ is \mathcal{T} -closed.

18. Show in two ways that if $a \in R$ then $\{a\}$ is a closed set in usual topology of R.

Answer:

For any $a \in R$, consider the singletone set $\{a\}$.

We know that for any positive integer i the intervals (a - i, a) and (a, a + i) both are \mathcal{U} -open. Now, we can express the complement of $\{a\}$ as follows

$$R-\{a\} = \left(igcup_{i \in J^+}(a-i,a)
ight) igcup \left(igcup_{i \in J^+}(a,a+i)
ight)$$

As, we can express $R - \{a\}$ as a union of \mathcal{U} -open sets, it is \mathcal{U} -open.

Therefore, $\{a\}$ is a \mathcal{U} -closed set.

Also we can express $\{a\}$ as follows

$$\{a\}=[a-1,a]\cap [a,a+1]$$

Therefore $\{a\}$ is an intersetion of two \mathcal{U} subsets of R. Hence $\{a\}$ is \mathcal{U} -closed.

19. Are closed intervals of R, $\mathcal U$ -closed? where $\mathcal U$ is the usual topology for R

Answer:

Yes. closed intervals of R is a \mathcal{U} -closed set.

For any $a < b \in R$, consider a closed interval [a, b].

We know that for any positive integer i the intervals (a-i,a) and (b,b+i) both are \mathcal{U} -open. Now, we can express the complement of [a,b] as follows

$$R-[a,b]=\left(igcup_{i\in J^+}(a-i,a)
ight)igcup \left(igcup_{i\in J^+}(b,b+i)
ight)$$

As, we can express R - [a, b] as a union of \mathcal{U} -open sets, it is \mathcal{U} -open.

Therefore, [a, b] is \mathcal{U} -closed.

20. For the usual topology \mathcal{U} , show that half-open intervals of \mathbb{R} are neither \mathcal{U} -open nor \mathcal{U} -closed

Answer:

For any a < b consider a half-closed and half-open interval [a, b)

First we show that [a, b) cannot be open.

If I is an open interval containing a then I contains infinitely many points less than a.

Elements of I not contained in [a, b)

Figure 1: A Half Closed - Half Open Interval

(See figure ??)

Therefore, for any open interval I containing a we have

$$I \not\subset [a,b)$$

Hence, [a, b) is not a \mathcal{U} open set.

Also we have the complement of [a, b)

$$R - [a, b) = (-\infty, a) \cup [b, \infty)$$

Here also if I is any open interval such that $b \in I$ then I contains infinitely many points less

Elements of I not contained in $[b, \infty)$

Figure 2: Complement of a Half Closed - Half Open Interval

than b not contained in $[b, \infty)$. (See figure ??) Therefore,

$$I \not\subset [b, \infty)$$

Hence, for $b \in (-\infty, a) \cup [b, \infty)$, if I is any open interval containing b then

$$I\not\subset (-\infty,a)\cup [b,\infty)$$

Hence, $(-\infty, a) \cup [b, \infty)$ is not an open set.

Therefore, R - [a, b) cannot be a \mathcal{U} -open set.

Hence, [a, b) is not a \mathcal{U} -closed set.

Thus, [a,b) is neither \mathcal{U} -open nor \mathcal{U} -closed in R.

21. Show that any finite set of real numbers is closed in the usual topology of \mathbb{R}

Answer:

First we show that every singleton subset of R is \mathcal{U} -closed.

Conseder any $a \in R$ and corrsponding singletone set $\{a\}$.

We know that for any positive integer i the intervals (a - i, a) and (a, a + i) both are \mathcal{U} -open. Now, we can express the complement of $\{a\}$ as follows

$$R-\{a\} = \left(igcup_{i \in J^+}(a-i,a)
ight) igcup \left(igcup_{i \in J^+}(a,a+i)
ight)$$

As, we can express $R - \{a\}$ as a union of \mathcal{U} -open sets, it is \mathcal{U} -open.

Therefore, $\{a\}$ is a \mathcal{U} -closed set.

Now, let A be any finite subset of R.

Suppose,

$$A = \{a_1, a_2, \ldots, a_n\}$$

Then we can express A as follows.

$$A=\bigcup_{i=1}^n\{a_i\}$$

As each singleton a_i is a \mathcal{U} -closed subset of R the set A has been represented as a finite union of \mathcal{U} -closed sets.

Hence A is \mathcal{U} -closed subset of R.

22. Neighbourhood of a point

Neighbourhood of a point:

Let (X,T) be a topological space and $x \in X$. A subset N of X is called a neighbourhood of x if there is a T-open set A such that

$$x \in A \subset N$$

23. Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Prove that A is \mathcal{T} -open set iff A contains a \mathcal{T} -neighbourhood of each of its points

Proof:

Suppose a subset A of X contains a \mathcal{T} -neighbourhood of each of its points. Therefore for each $p \in A$ there is a \mathcal{T} -neighbourhood N_p of p such that

$$N_p \subset A$$

As N_p is a \mathcal{T} -neighbourhood of p there exists some \mathcal{T} -open set G_p such that

$$p \in G_p \subset N_p$$

Let

$$G = \bigcup_{p \in A} G_p$$

Here G is a \mathcal{T} -open set as it is a union of \mathcal{T} -open sets.

Now we show that A = G

For any $x \in A$, as discussed above, there is some T-open set G_x such that $x \in G_x$ Therefore,

$$x\in\bigcup_{p\in A}G_p=G$$

Hence,

$$A \subset G$$

Also, if $x \in G$ then $x \in G_p$ for some $p \in A$. As $G_p \subset N_p \subset A$, we have $x \in A$ Hence,

$$G \subset A$$

Thus,

$$A = G$$

Since G is \mathcal{T} -open, we conclude that A is \mathcal{T} -open.

Conversely suppose A is T-open. Then, A is a T neighbourhood of each of its points

Since, $A \subset A$, A contains a T-neighbourhood of each of its points.

24. If
$$X = \{a, b, c\}$$
 then find three topologies \mathcal{T}_1 , \mathcal{T}_2 and \mathcal{T}_3 for X such that $\mathcal{T}_1 \subsetneq \mathcal{T}_2 \subsetneq \mathcal{T}_3$

Answer:

Possible topologies satisfying the conditions are

$$T_1 = \{\emptyset, X\}$$

$$T_2 = \{\emptyset, X, \{a\}\}$$

$$T_3 = \{\emptyset, X, \{a\}, \{a, b\}\}\$$

25. Find three mutually non-comparable topologies of $X = \{a, b, c\}$

Answer:

Following are three mutually non-comparable topologies of $X=\{a,b,c\}$

$$T_1 = \{\emptyset, X, \{a\}, \{a, b\}\}$$

$$T_2 = \{\emptyset, X, \{b\}, \{a, b\}\}$$

$$T_3 = \{\emptyset, X, \{c\}, \{a, c\}\}\$$

26. Door space

A topological space (X, T) is known as a Door Space if each subset of X is either a T-open set or a T-closed set.

27. Give an example of a Door Space

An example of a Door Space

Consider a set $X = \{a, b, c\}$ and a topology \mathcal{T} for it given by

$$\mathcal{T} = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}$$

All the subsets of X other than the members of topology \mathcal{T} are given in the following collection.

$$ig\{\{c\},\{b,c\},\{a,c\}ig\}$$

We observe that,

 $\{c\} = X - \{a, b\},$ hence it is a \mathcal{T} – closed subset of X

 $\{b,c\} = X - \{a\},$ hence it is a \mathcal{T} – closed subset of X

 $\{a,c\} = X - \{b\},$ hence it is a \mathcal{T} – closed subset of X

14

Thus, every subset of X is eiter a \mathcal{T} -open set or a \mathcal{T} -closed set.

Hence, (X, T) is a Door Space.

28. Which of the following subsets of \mathbb{R} are \mathcal{U} -neighbourhood of 2?

(a) (1,3) (b) [1,3) (c) [2,3) (d) [1,3] (e) $[1,3]-2\frac{1}{8}$

(f) (2,3) (g) (1,3] (h) [2,3] (i) \mathbb{R}

Solution

- (a) As $2 \in (1.5, 2.5) \subset (1, 3)$, the set (1, 3) is a \mathcal{U} -neighbourhood of 2.
- (b) As $2 \in (1.5, 2.5) \subset [1, 3)$, the set [1, 3) is a \mathcal{U} -neighbourhood of 2.

(c) Any open interval I containing 2 has infinitely many real numbers on its left-hand side. Therefore

$$I \not\subset [2,3)$$

Hence, [2,3) cannot be \mathcal{U} -neighbourhood of 2.

- (d) As $2 \in (1.5, 2.5) \subset [1, 3]$, the set [1, 3] is a \mathcal{U} -neighbourhood of 2.
- (e) As $2 \in (2 + \frac{1}{16}, 2 \frac{1}{16}) \subset [1, 3] 2\frac{1}{8}$, the set $[1, 3] 2\frac{1}{8}$ is a \mathcal{U} -neighbourhood of 2.
- (f) As 2 is not contained in (2,3) it cannot be \mathcal{U} -neighbourhood of 2.
- (g) As $2 \in (1.5, 2.5) \subset (1, 3]$, the set (1, 3] is a \mathcal{U} -neighbourhood of 2.
- (h) Any open interval I containing 2 has infinitely many real numbers on its left-hand side. Therefore

$$I \not\subset [2,3]$$

Hence, [2,3] cannot be \mathcal{U} -neighbourhood of 2.

