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USO5CMTH24- UNIT : 1

[ 1. Equivalent Sets

Equivalent Sets
If there exists a one-to-one correspondance between two sets then they are called equivalent to
each other.

2. Infinite Set

Infinite Set
A set is called an infinite set if for any positive integer n there is a subset of the set containing
exactly n elements.

[ 3. Countable Set (or Denumerable Set) ]

Countable Set (or Denumerable Set)
A set is called a Countable or Denumerable set if it is equivalent to the set of postive integers.

[ 4, Uncountable Set. ]

Uncountable Set
An infinite set which is not countable is called an uncountable set.

[ 5. Prove that the set of all integers is conuntable.

Proof:
The set of all ittegers is

Z={..,—4,-8-2-1,-0,1,2,3,4,...}
Define a function f : Z — I by,

n—1
2

, for n=1,3,5,7,...
fln) =
n
—5 for n=2,4,6,8,...



Here f is one-one and onto I, the set of positive integers. Therefore f is a one-to-one corre-
spondance between Z and I. Hence, Z is countable.

o0
6. If Aj, Ay, ... are countable sets then prove that |J A; is also countable.
i=1
Proof:
Each of 4,, 4,,... is countable a set. So we can arrange them in an order corresponding to

the order of the positive integers. Suppose,

A = {aiva;:a‘;: = }

Ay ={d?,a2,a3,...}

A, ={a7,a3,65,...}

Now, for any element a’ of a set A; define

Height of o =i+ §

o0
Next, we arrange the elements of | J A; according to their heights in increasing order without
=1

listing same element again as follows.

L oad ol 32 el A e 2]
l5"1','0'1:a"2:al:a"mﬂ'?.:'a'l:(]"21ﬂ:i:a"4:

This arrangement can be viewed as shown in the following figure where the elements with same
height are placed on same diagonal.

oo
This arrangement assures One-to-One correspondance of | J A; with the set of
i=1

Table 1: Digonal arrangements of elements with same height.
1 2

oo
natural numbers. Hence, | ) A; is countable.
i=1

7. Prove that the set of rational numbers is countable.




Proof:
We have the set of rationals defined by Q@ = {g /p,a € Z, g# 0}

Now define 0 w1 1 =8 9
Eﬂz{_:——r_:_—r_:"'}
n n n n n

Each E, is countable as E, has a one-to-one correspondance with the set of integers, hence
with the set of positive integers.

Now,
Q= U E;
i=1

Since, ¢} is a countable union of countable sets, it is countable.

[ 8. Prove that every infinite subset of a countable set is countable. ]

Proof:
Let A be a countable set and B be an infinite subset of A. Suppose, A = {a1,da,...}

Then each member of B is one of a;.
Let n; be the smallest subscript for which a,, belongs to B.
Let ns be the next smallest subscript for which a,,, belongs to B

Continuing similarly we shall be able to write the infintie set as follows

Be= A6, QGrgy-r o}

As the elements of B are labled with 1,2,3,... the set B is equivalent to the set of postitive
integers. Hence, B is countable.

[ 9. Prove that set of all rationals in the interval [0,1] set is countable. ]

Proof:
We know that the set of all the rational numbers ¢} is countable.

As there are infinitely many rational numbers between any two real numbers, we have in-
finitely many rational numbers in [0, 1].

Thus, the set of rational numbers in [0, 1] is an infinte subset of the countable set Q.

Since every infinite subset of a countable set is also countable, we conclude that the set of
all rational numbers in [0, 1] is countable.



10.  Metric Space

Metric Space

Let M be a non-empty set. A function p: M x M — [0, 00) is said to be a Metric for M if
the following four properties are satisfied

(i) ,0(17, "E) =0; (.CE € M) ’

(i) plz,y) >0(z,ye Mxz#y),

(iil) p(z,y) = ply,x); (z,y € M),

(iv) p(z,y) < p(=, 2) + p(2,9); (z,y, 2 € M) (triangle inequality).

Along with the metric p the set M is known as a Metric Space which is generally denoted
by (M, p)

11. Absolute Value Metric on R

Absolute Value Metric on R
A matrix p: R x R — [0, 00] defined by

d(z,y) = |z —yl, V=,y € R

is called the Absolute Value Matric on R.

12. Show that p: R x R — R, defined by p{z,y) = |z — y|, is a metric on R

Answer
Here, p: R x R — R is defined by p(z,y) = |z — y|.
For z,y,z € R

)  day)=lz-y[>0
(i) dz,y)=0<+= |z—yl=0<= z=y
()  d(z,y) =le—y| = |y — 2| = d(y, z)
Therefore, for any = and y in R we have d(z,y) = d(y, x)
(iv) We have,

d(z,y) =z —y|
=|lt—2z+2z—1y
<z -2+ ]2 -yl
= d(z,2) +d(z,y)

Therefore, d(z,y) € d(z, 2} + d(z, ).



From (i), (ii), (iii) and (iv), it follows that d is a metric for R.

13. Discrete Metric on R

Discrete Metric
A function d: R x R —+ R defined by

1; if z#y

d(a:,y)={0. if z=y

is called Discrete Metric for R. The discrete metric space (R, d) is also denoted by Rq4

’

14. Show that d: R x R — R defined by

d(x,y)={“if“é”

0; when z=y

is a metric on A.

Answer:
Here d : R x R — R is defined by

1 if -ty
d(x’y)z{o if z=y

For z,y,z € R
1. By the definition of d we have,

dz,y)=0 or d(z,y)=1

cd{z,y) >0

2. d(z,y) =0 < z=y (by the definition)

3. If z = y than d(z,y) = 0 = d(y, x)
and

if x # y then d(z,y) = 1 =d(y, z)
thus for any z and y in R we have d(z,y) = d(y, =)



4. Now, if z = y then we have d(z,y) =0
As 0 < d(z,2) and 0 < d(z,y) we get,

d(z,y) < d(z,z) + d(2,9)
Also if z # y then d(z,y) = 1.

Moreover, any z € R must differ from atleast one of x and y. Therefore, £ # 2 or

y# 2z
d(z,z) =1ord(z,y)=1

d(z,y) =d{z,z) or d{z,y)=d(z,y)

So, in this case also,
d(z,y) < d(z,2) +d(2,9)

. From (1), (2), (3) and (4), it follows that d is a metric for R.

15. Let p: R* x R* — R be defined as

k{1

plz,y) = [Z(wk A yk)2]

k=1

where © = (z1,%32,...,%), ¥ = (¥1,%2; -, %) € R*. Then prove that p is a
metric space.

Proof
For z = (1, %2, .., Zn), ¥ = (Y1, Y2, -y Un)» 2 = {21, 22, ..., 2n) € R",

=

L ploy) = | 5o -wf?| " 0

2.
1
n ]
p(@,y) =0 > [Z(xk —ykf] Lo
k=1
— (ﬁ?k—’yk)2=0, Vk=12,...,n
= Tr=wy, VE=12,...,n
<:> ("El,xz, "'Tmn) = (y]-’yz, e yﬂ)
Spzy) =0 &= z=y
3.

1
2

o(z,y) = [Z(mk — yk)zl [Z(yk — -'rk)2] = p(y, )



4. For = (21,%2, ..y Zn), ¥ = (Y1,Y2, .-y Yn) and 2 = (21, 22, ..., 2,) let us define, a5 =
Ty, — 2k, by = 2z — yi. Clearly, ag + by = 2 — yx. Now,
1

plz,y) = | D (& — ?Jk)2]

n

= Z(ak + bk)z

| k=1

[ n
D%
| k=1

[ -l

1
2

_|_

/AN

1
n 2
> bi] (By Minkowski’s inequality)
k=1

1
n 2

< Z(Ek — z)?

L k=1
= pl(z, z) + p(2, k)
Thus we have, p(z,y) < p(z,z) + p(z,y)

_|_

Z(Zk - yk)2]

k=1

From (1), (2), (3) and (4), it follows that p is a metric for R"

16. For P(z1,1) and Q(z3,y2) in R?, define ¢ : R x R? — R by

o(P,Q) = |1 — z2| + |y1 — v

, show that ¢ is a metric on R?

Answer:
For P(z1,1),Q(3,¥2) and S(zs,¥s) in R?

l. o(P,Q)=|z1 — 22| +|th —y2| 2 0
2.
o(P,Q)=0 <> |z1 —z3| + |1 —y2| =0
< |t1— 22| =0, |ph —y2| =0
— Ty =T2,1h = Y=

— (xlsyl) = (3’;2,'3}2)
— P=(Q

3. 0(P,Q) = |21 — Ta2| + |th — 12| = |2 — 21| = 0, |2 — 1| = 0(Q, P)
4,
o(P,Q) = |z1 — x2| + |1h — 2
= |21 — 23+ 23 — Za| + |11 — Y3 + ¥z — 12
< |21 — 23| + |23 — 22| + 10 — w3 + 43 — 22l
< (|21 — 23| + |1 — ws]) + (|23 — x| + |ys — 22]) |
=o(P,8) +0(S,Q)

8



Therefore, o(P, Q) € 6(P,Q) + o(S, Q)

From (1), (2), (3) and (4), it follows that o is a metric for R?

17. Let (M,d) be a metric space and let d*(z,y) = min{l,d(z,y}}. Then prove

that d* is a metric on M

Proof:
By the definition, d*(z,y) = min{1,d(z,y)}

Therefore,
d'(z,y) <1 and d'(z,y) < dz,y)

Now, for z,y,z € R

1. As d*(z,y) = min{l,d(z,y)} and d(z,y) = 0, we have, d*(z,y) > 0

2. &*(z,y) =0 <<= min{l,d(z,y)} =0 <= d(z,y) =0 < z=y

3. If d*(m:y) = min{l:d(msy)} > min{lad('y:x)} =d*(y,7)

4. First, suppose d*(z,z) =1 or d*(2,y) = 1 or both are equal to 1
then as d*(z,y) < 1 we get

d*'(z,y) < d*(z,2) or d'(z,y) <d'(z,y)

Therefore,
d*(z,y) < d*(z,2) + 2*(z,9)

Next, suppose d*(z, z) # 1 and d*(z,y) # 1
Then, d*(z, z) = d(z, 2) and d*(z,y) = d(z,y)
As d*(z,y) < d(z,y) and d(z,y) < d(z, z) + d(z,y), we get,

d*(z,y) < d(z,2z) + d(z,y)

Therefore,
d*(z,y) < d°(z,2) + d*(2,y)

Thus, in any case we have,
d*(z,y) < d'(z,2) + d*(2,9)

From (1), (2), (3) and (4), it follows that d* is a metric for R.

18. Let (M,d) be a metric space and let di{z,y) =

that d; is a metric on M

_ 4=,y
1+ d(z,y)’

Then prove




Proof:
For a metric space (M, d), a function d; is defined by

__d(=,y)
di(z,y) = 1+ d(z,y)

. Now, for z,y,z e M

d{z,
L diay) = gl >0
d(z,
2. di(z,y) =0 <= l—l-(z—(.’ij)y)=0 = d(z,y) =0 = =y
d(z,y) _ _dly,2)

3. dl(w:y) =

1+d(z,y) 1+d(y,x) = 4y, )

4. Also, as d is a metric for M, for 2 € M, we have
d(z,y) < d(z,z) + d(2,9)
Adding d(z,y)[d(z, z) + d(z,y)] on both the sides, we get,

s d(z,y) + d(z,y)[d(z, 2) + d(z, y)] < ld(z, 2) +d(2,9)] + d(z, y)[d(z, 2) + d{2,9)]
- d(z, )1+ d(z, 2) + d(z,9)] < [d(z, 2) +d(z,9)](1 + d(z,y))

_dey) __dz2)+d(z,y)

14d(z,y)  1+d(z,2) +d(z,y)

day) _ d@?) 4(z,y)

Cl4d(z,y)  1+d(z,2)+d(zy)  1+d(z,2) +d(z,y)
d(z,y) . _d(z,2) d(z,y)

C1vdzy) S 1+dE,2) | 1+d(zy)
Sodh(z,y) < di(z, 2) + di(z, )

From (1),(2),(3) and (4) it follows that d; is also a metric on M.

19. Show that if p is a metric on a set M then so is 2p

Answer:
Here, p is a metric on M. For all z,y € M function 2p is defined by

(20)(z,y) = 2p(z,y)
Now, for z,y4,2 € M

1. (2p)(z,y) =2p(z,y) 20 (. p(z,y) 2 0)

2. 20)(z,y) =0 <= 2p(z,y) =0 <= p(z,y) =0 <= z=y

10



3. (20)(z,y) = 2p(z,y) = 20(y, z) = (2p)(y, 2)
4.
(20)(z,y) = 2p(z, y)
< 2[p(z, 2) + p(2,9)]

< 2p(z, 2) + 2p(2,y)
< (20)(z, 2) + (2p)(2,)

Therefore, (2p)(z,y) < (2p)(z, 2) + (20)(z, y) From (1),(2),(3) and (4) it follows that 2p is also

a metric on M.

20. Show that if p and ¢ are metrics on a set M then p+ ¢ is a metric on M.

Answer:

Here, p and o are metrics on M. For all z,y € M function p + o is defined by

(p+ o)z, y) = plz,¥) + o(z,9)

Now, for z,y4,z € M

L (p+0)(z,9) =p(z,v) +o(z,y) 20 (. plr,y) 20,0(z,y) 20)

2. (pt+o)(z,y) =0 < plz,y) +o(z,y) =0 < p(z,) =0,0(z,9) =0 < z=y
3. (p+0)(z,y) = p(=,y) + o(z,4) = ply, ) + oy, 7) = (p + 0)(y, 7)

4,

(p+ o)z, y) = plz,y) + oz, 9)
< [p(z, 2) + p(z,y)] + [o(z, 2) + o (2, 9)]
= [p(z, 2) + o(z, 2)] + [p(2,y) + o(z,¥)]
=(p+0)(z,2)+ (p+0)(z,9)

Therefore, (p+ o)(z,y) < (p+o)(z,2) + (p+ o)(2,y)

From (1),(2),(3) and (4) it follows that p + o is also a metric on M.

21. Let d: Rx R— R be defined by d(z,y) = sin |z — y|. Check whether d is
a metric or not.

Answer:

For 2,7 € R, we have
d(2r,m) =sin |27 — x| = sinw =0, but 27 # 7.
d is not a metric on R

11



22. Letd:[0,3] x[0,7] — R be defined by d(z,y) =sin|z — y|. Show that d is
a metric on [0, 7].

Answer:
For z,y,2 € M

1. For, z,y € [0,5] we have < [z —y| < §
Therefore, d(z,y) =sin|z —y| 2 0

2. d(z,y) =0 < sin|z—y|=0 <= |z—y|=0 <= z=y
3. d(z,y) =sinlz — y| = sin|y — z| = d(y, 7)
4. Now, for any x,y,z € [0, ] wehave < |z —y| < §, < [z — 2| € § and < |z—y| < § Also,

d(z,y) = sin |z — |
= | sin(z — )| = |sin(z — z+ 2z — y}|
= |sin(z — z) cos(z — y) + cos(z — z) sin(z — y)
< | sin(z — 2)| cos(z — y)| + | cos(z — 2)| sin(z — y)|
< sin|z — 2| +sin|z — y|(.- | cosd| < |
= d(z, z) + d(z,y)

Therefore, d(z,y) < d(z, z) + d(z,y)
From (1),(2),(3) and (4) it follows that d is also a metric on [0, 7].

23. Ifd:R — R is defined by d(z,y) = |z> — *| then check whether d is a
metric or not.

Answer:

For 2, -2 € R, we have

d(2,-2) =122 — (—2)?| =0, but 2 # —2.
d is not a metric on R

[ 24,  Cluster point.

Cluster Point:
Let (M, p) be a metric space and A C M. A point = € M is said to be a cluster point of A if
for each h > 0 there is some y € A such that

0 < p(z,y) <h

25. Show that the set of all cluster points of (0,1) is [0, 1]

12



Answer:
Here, (0,1) is to be treated as a subset of R' (i.e. R with absolute value matrix)

First we show that each point of [0, 1] is a cluster point of (0, 1)
For any r > 0, open interval (0,r), intersects (0,1) at infinitely many points. So 0 is a

cluster point of (0,1). Also, for any r > 0, (1 —r, 1), intersects (0, 1) at infinitely many points.
So 1 is a cluster point of (0,1). For any r > 0, and ¢ € (0, 1), the interval (c—r, c+7), intersects

0 1
" ]
0 1-r 1
[ { i
O C- Ir Ca=F 1
[ d 5 ]

(0,1) at infinitely many points. So ¢ is a cluster point of (0,1). Thus, each point in [0,1] is a
cluster point of (0,1)

Finally, we show that no point out side [0, 1] can be a cluster point of (0,1)
Let z ¢ [0,1].

If 1 < x then we can choose some sufficiently small ¢ > 0 so that
<Mz E& 5

Therefore,
O0,DN(z—¢e,z+e€)=0

So, if choose some r such thth 0 < 7 < z — € then for every y € (0,1) we have,
r<|z—y|

So, z cannot be a cluster point of (0, 1).

Similarly it can be shown that if £ < 0 then also = cannot be a cluster point of (0,1) the
set of all cluster points of (0, 1) is [0, 1]

[ 26. Find the cluster points of ]

[A] (a,b)

Answer: [a,b] Proof similar to that given for the set of limit points of (0,1).

13



[B] [a,d]

Answer: [a, b] Proof similar to that given for the set of limit points of {(0,1).

[C] @

Answer:
As every neighbourhood of any real number contains infinitely many rational numbers, all real
numbers are cluster points of (). Therefore for the set of cluster points of @) is E.

[D] B\Q

Answer:
Here, R\@ is the set of all irrational numbers.

As every neighbourhood of any real number contains infinitely many irrational numbers, all
real numbers are cluster points of R\@. Therefore for the set of cluster points of R\@ is R.

[E] R

As every neighbourhood of any real number contains infinitely many real numbers, all real
numbers are cluster points of H.

[F] N

Distance between two consecutive integers is 1.
Therefore. for any real number £ we can always find some sufficiently small § > 0 such

that
(x — 6,z +9)

contains no positive integer other than, possibly z.
Hence, no real number is a cluster point of N.

Therefore, the set of cluster points of N is .

[G] Z

Distance between two consecutive integers is 1.

Therefore. for any real number £ we can always find some sufficiently small § > 0 such

14



that
(z — 4,z + d)

contains no integer other than, possibly x.
Hence, no real number is a cluster point of Z.

Therefore, the set of cluster points of Z is §.

H] {1,311 .}

19313171 g

For any given € > 0, by Archimedean Property of R!, there is some positive integer n such
that

1 < ne
Therefore,
1
—gl €
n
Thus, for any € > 0 there is some positive integer n such that
il
. € (—e¢,€)

Therefore 0 is a cluster point of the given set.

Also, for any other z # 0 we can find sufficiently small ¢ > 0 such that
(z—46,z+9)

contains no member of the sequence other than z. The set of cluster points of {1, %, %, vey %, coulf
is {0}

27. Limit of a function

Limit of a function

Let (M1, ) and (Ma, p2) be two metric spaces and @ € M;. Also let f : M1y — M; be a
function and L € M,. Then L is said to be limit of f as x tends to a, if for each € > 0 there
exists some & > 0 such that

pa(f(a), f(z)) <e whenever 0< pifa,z)<é

28. Let (M, p) be a metric space and let a be a point in M. Let f and g be
real valued functions whose domains are subsets of M. If lim f(z) = L
z—ra

and lim g(z) = N then prove that

r—ra

135



[A] lim [£(z) + g(@)] =L+ N

Proof:
Let lim f(z) = L and lim glz)=N

T—a

Then, for any given ¢ > 0 there exist some 4; > 0 and d; > 0 such that

|f(z) - L| < g, whenever 0 < p(z,a) < & — — — (1)

lg(z) — N| < g, whenever 0 < p(z,a) < d; — — — (2)
If we take § = min{d, 62} then for 0 < p(z,a) < 4, (1) and (2) hold true.

Therefore, for 0 < p(z,a) < & we have,
[(f(z) + g9(z)) — (L + N)| = [(f (=) — L) + (9(z) — N)|
<|f(z) — L| + |g(z) — N|

< % = % whenever 0 < p(z,a) < §

=€

S(f(x) +g(x) — (L+ N)| <¢ whenever 0 < p(z,a) <&

Hence,

(o) + g(x)) =L+ N

[B] lim [f(z) — g(z)] = L— N

Proof:
Let li_l}n f(z) =L and ].i_I’Il g{z)=N
Then, for any given € > 0 there exist some ¢; > 0 and d; > 0 such that

|f(z)— L| < g, whenever 0 < p(z,a) < §; — — — (1)

lg(z) — N| < %, whenever 0 < p(z,a) < 0 — — — (2)
If we take § = min{é;, 2} then for 0 < p{z,a) < 4, (1) and (2) hold true.

Therefore, for 0 < p(z,a) < § we have,

|(f(z) — g(z)) — (L — N)| = |(f(z) — L) + (N — g())|
< |f(z) — L] + [N — g(=)|
|f{z) — L]+ |g{z) — N|

% + g whenever 0 < p(z,0) < 6§
€

/

<

~|(f(z) — g(z)) — (L — N)| < ¢ whenever 0 < p(z,a) < &

16



Hence,

lim[f(x) - g(x)] =L - N

O] Jim [(2).g(a)] = lim f (o). i g(c)

Proof:
Let ll_rg f(z) =L and il_r)r}]g(m) =N
Now,
|f(z).g(z) — LN| = [f(z).g(z) — L.g(2) + L.g(z) — LN|
< lg@)f (=) — L| + | L||g(=) — N|
Therefore,

£().9(@) ~ LN| < g@|If() — L] + |Ellga) ~ N -=- (1)
As 1En g(z) = N, for 1 there must be some §; > 0 such that

lg(z) — N[ <1, whenever 0 < p(z,a) < &

Now,
|lg(z)| = lg(z) — N + N|
< |g(z) — N[+ |N|
<14 |N|, whenever 0 < p(z,a) <&
Therefore,

lg(z)| < |N|+1, whenever 0 < p{z,a) < d;

Hence, for 0 < p(z,a) < & from (1), we have ,
|f(z).9(z) — LN| < (|N| + D|f(z) — L| + [L][|g(z) - N| - — — (2)
Again considering li_r>n f(z) = L and 11_1’11 g(x) = N, for any given € > 0 there must be some
do > 0 and 43 > 0 such that
|f{z) - L] <

€

m, whenever 0 < p(.'L', a) < 52 - = (3)

lg(x) — N| < , whenever 0 < p(z,a) < 3 — — — (4)

2(|L] +1)

If we take 6 = min{4d;, d2,83} then all of (2),(3) and (4) hold true with each é;,d> and &5 re-
placed by 4.
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Therefore, for 0 < p(x,a) < 4, we have,

|f(=)-9(z) — LN| < (|N| + 1)|f(«) — L| + | Ll |g{z) — N|

€
<IN+ gy * g 71
€ €
< E + 5
.| f(z).g(x) — LN| < ¢ whenever 0 < p(z,a) < d
Hence,
lim [F(x)g(x)] — LN
[D] mll_mfgm; — % if N #0
Proof:

Let li_IP f(z) =L and li_r’n g{z) = N, where N #£0

As, N # 0 implies that |[N| > 0.
Thercfore, as 1i_1>n g{z) =N, for J%l > 0 there exists some 6; > 0 such that

N
lg(z) — N| < %, whenever 0 < p(z,a) < &
Now,
[N =N — g(z) + g(z)]
~ N <IN — g(z)| + [9(z)]
= NI < |g(z) = N| + [g(2)|
SN < |2£| + |g(z)|, whenever 0 < p(z,a) < &
N
=B <)
2 < o)
Hence, i
< -, whenever 0 < p(z,a) < & --- (1)

lg(=)l ~ IN]

18



Now,

f(z) L ‘f(-'r N — L.g(z)

g(z) N.g(z)
|N|2|f(a:) N — L.g(z)| whenever 0 < p(z,a) < §; (from (1))
|N|2|f(a:) N — LN + LN — L.g(z)| whenever 0 < p(z,a) < é
2|L
|N|2|N||f( z)— L| + 2 || () — N| whenever 0 < p(z,0a) < &

|N||f( z)— L| + Bl ||g() N| whenever 0 < p(z,a) < §;

Hence, for 0 < p(z, a) < & from (1), we have ,

f(z) L 2|L|

R S L+ 22 |g(z) — N| — — — (2

= | <T@~ L+ Sgle@) ~ N - -~ @)
Again, considering 1i_1>n f(z) =L and liin g(z) = N, for any given € > 0 there exist some dy > 0
and 43 > 0 such that

N
|f(z) —L| < %, whenever 0 < p(z,a) < 83 — — — (3)
lg(z) — N| < e henever 0 < p(z,a) < & (@)
- ] v ” wil
g 4(|L| + 1) p

If we take § = min{é;, d2,ds} then all of (2),(3) and (4) hold true with each of d;,d, and d;
replaced by &.
Therefore, for 0 < p(z,a) < 4, we have,

fa) < |N||f() 1+ 2 0@ -

<M (|N4|E) + o (4032 1))

o " €
Zaa 2
flz) _L
. |—/—= — —=| < e whenever 0 < p(z,a) < 4§
Hence,
. f(x}) L
,l‘l_rg g(x) N

29. Convergence of a sequence

Convergence of a sequence:
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Let (M, p) be a metric space and {z,}..; be a sequence of points in M. If L € M is point in
M such that for every € > 0 there exists some positive integer N such that

p(sn, L) <€, whenever n>=N

then L is said to be the limit of sequence {z,}.. , as n tends to co. In symbols it is written as

’ |
L1y L2y L3y secrsanees I,

v

INy TN41y TNy eeeneee

lim s, =1L
n—oo

In this case we say that {z,} ., is Convergent in M to a point L.

30. Cauchy sequence

Cauchy sequence:
A sequence {z,},-, of points in a metric space (M, p) is said to be a Cauchy Sequence if
for a given € > 0, there exists some N € I such that

P T, Tn) < € Nmn>N

31. Prove that if {s,}2, is a convergent sequence of points in a metric space
(M, p) then {s,}22, is a Cauchy sequence. Is the converse true? Justify.

Proof:
Let {s,} be a sequence of points in a metric space (M, p)

Suppose, {s,} converges to a point [ in M.
Therefore, For any given € > 0 there exists a positive number N such that

p(sn,l) < =, whenever n > N

DO

Therefore, for any two positive integers n; > N and ny > N we have,

p(sny, 1) < and p(sn,,1) <

B oy
PO m
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Therefore, for ny > N and ny > N, we get,

P(8nyy 8ny) < P(Sny, 1) + p(8ny, 1)
<€ €
279
=€

Hence, {s,} is a Cauchy sequence.

The converse is not true.

Justification
Consider the sequence {%} of points in {0,1). This is a Cauchy sequence in (0,1).

Since, it converges to 0 in R but
0¢(0,1)

the sequernce does not converge to a point in (0,1)

Therefore, every Cauchy sequence is not necessarily convergent.

32. Show that a sequence in a metric space cannot convergene to two distinct
limits.

Answer:
Suppose, a sequence {a,} of points in a metric space (M, p) converges to two limits {; and [,.
Therefore, for any given € > 0 there are some positive integers Ny and N; such that

plan, hh) < % whenever n > N,

and .
play, ) < 2 whenever n > Ny

Therefore for
N = ma.x{N Tiis N 2}

we have,

pla,, 1) < g and  p(an,l) < g whenever n > N

For n = N we get,

p(l, 1) < p(an, 1) + p{an, I2)
€
< 5 +

€
o p(ll, lz) <€
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As p(ly, 1) is less than every positive number we must have p(ly,1l3) = 0.

Hence,
lh=1

. Thus, a sequence in a metric space cannot convergene to two distinct limits.

33. Show that if {z,}°, is a convergent sequence in R; then there exists a
positive integer N such that zy =2y =2Zy40 = ...

Answer:
Let {z,}, be a convergent sequence of points in Ry (i.e. in (R,d) ).

As the sequence is a convergent sequence it is a Cauchy sequence.
Therefore, for % > 0 there is some positive integer N such that

1
1 ot Vn>N,p>1
Now,
1
W Es Entn) < 5T d(Zpn, Tnip) =0
But, then
Ty = Enip, YVR2Np21
IN = ZN+1 = TN42 = ---
34. Open Ball ]
Open Ball:

Let (M, p) be a metric space. For a € M and r > 0 the set {z € M/ p(a,z) < r} is called an

\ O‘pen\]?mll Bla,r] /
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Open Ball centred at a with radius 7 and it is generally denoted by Bla,r| or Bla;r]. Thus,
Bla,r] = {z € M/p(a,z) <1}

Remark:
In R! (i.e. R with absolute value matrix) for ¢ € R and 7 > 0 we have

Bla,r] ={z € Rf/|x — a| < r}
Therefore, an open ball in R! is an open interval

a

< L -
<

&/

Bla,r]=(a—r,a+7)

35. Continuity of a function ]

Continuity of a function:
Let (M, p1) and (Ma, ps) be two metric spaces. A function f : M; — M, is said to be
continuous at a point a € M, if

lim f(z) = f(a)

T—ra

Remark:
(1) From the definition it follows that,

f : My — M, is continuous at a € M, iff for each ¢ > 0 there exists some § > 0 such
that

pa(f(2), f(@) < whenever py(a,) < 6

(2) If we have f : R' — R! then f is continuous at a € R; iff for each € > 0 there exists some
0 > 0 such that
|f(z) — fla)] <€ whenever [z—a|<$§

36. Prove that a real valued function f is continuous at a € R! iff the
inverse image under f of any open ball B[f(a),¢] about f(a) contains an
open ball Bla,d] about a

Proof:
We know that,

f: R' = R' is continuous at a € R' < li_1>n f(z) = f(a)
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Also,

lim f(z) = f(a}) <= for any given € > 0 3 some § > 0 such that

|f(z) — f(a)] < ¢ whenever |z—a| <§
< f(z) € (f(a) —¢, f(a) +¢€) whenever z € (a— &,a+9)
< f(z) € B[f(a),e] whenever z € Bla,d]
<= f(Bla,d]) C B[f(a), €l
<= Bla,d] C f(Blf(a),€])

Hence, we conclude that a function f is continuous at a € R* iff for every € > 0 there exists
some & > 0 such that

f~(Blf(a),€]) > Bla, 4]

37. prove that a real valued function f is continuous at a € R iff whenever
{z,}22, is a sequence of real numbers converging to a then {f(z,)}32,
converges to f(a).

Proof:
Let us first assume that f is continuous at a and prove that

ligfT, —al—=> 1}1—{1;10 f(zn) = f(a)

n—o0

Since f is continuous at a for any given € > 0 there exists 4 > 0 such that

f(x) € B[f(a),e] whenever z € Bla,f] — — — —(1)

Now, suppose {2,}2, is any sequence of real numbers converging to a. i.e.

Iim 2, =a
n—rod

Therefore, for 4 > 0 there is some N € I such that,
|#n —a| <4, whenever n 2 N

. ZTn € Bla,8], whenever n> N ---(2)
Teking z = z,, in (1), it follows from (1) and (2) that,

f(zn) € B[f(a),e] whenever n > N

Therefore

lim f(zn) = f(a)

n—reo

Thus,
lim z, =a = lim f(z,) = f(a)
n—o0

n—00
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Conversely, suppose

lim z, =a =>,}an}of($") =f(a) ---(3)

n—rec

If possible, suppose f is not continuous at a.
Therefore, there exists some € > 0 such that the inverse image under f of B[f(a); €] contains
no open ball about a.

Therefore, for each positive integer n we have

B [ ;] ¢ F(Blf(a), d)

Therefore for each n € I there must be some z,, € R such that
1
T, € B [a, H] but z, & f~HB[f(a),€])

It implies that,
rn€ B la,x| but f(on) # BlI(@).d

Thus, get a sequence of real numbers {z,}32; such that,
1
oo —al < - but [f(zn) ~ fa)] >

1
. Since lim — = 0 it is clear that

n—oo N

].i_}m T =t
But |f(z.) — f(a)| > ¢ implies that
lim f(zn) # f(a)

This is a contradiction to our assumption at (3). So, our supposition is wrong.

Hence, f must be continuous at a.

38. Let (M, p:) and (M, p2) be two metric spaces and f : M; — M, be a func-
tion and a € M;. Then prove that a function f is said to be continuous
at a iff one (and hence all) of the following conditions hold true.

(a) Givene>0 , 38>0, 3p[f(z), f(a)] < e whenever p;(z,a) < §

(b) The inverse image under f of any open ball B[f(a),¢| about f(a)
contains an open ball B[a, d] about a.

(c) Whenever {z,}3°, is a sequence of points in M; converging to a , then
the sequence {f(z,)}}32; of points in M, converges to f(a).

Proof:
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Let (My, p1) and (My, p2) be two metric spaces and f : M; — M, be continous at a € M.

Now, f is continuos at a € M; - - -

= Im () = (0

<= for a given € > 0 3 some § > 0 such that

< f(z) € Blf(a),¢

p2(f(z), f(a)) < e whenever pi(z,a}<d---(2)
whenever z € Bla, d]

<= f(Bla,d]) C B[f(a),€]
<= Bla,0] C f7(Blf(a),e]) - - - (3)

(1)

(A/Ilapl) (ﬂ/f2ap2)
4 ) 4 )
/_f\
(L/ \
f(a)
\_ / 5 J
(M, p1) (Ma, p2)
- N a N
/’_f\
( continuous )
@ -
Bla, 4]
S 3K \___ Bli(a).d A
f(x) € B[f(a),e] whenever x € Bla,/d]
(M, p1) (M3, p2)
GI(B[f(a),e] ) _'\'“—‘-.ﬁ_“_h_( \
/_f\ e
( continuous ) €
. f(a)
[(@)
X — _ Blf(a).q J

Bla,d] c f~1(B[f(a),€])

Thus we have (a) <= (b)
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Next we show that (b) and (c¢) are equivalent.

Let us assumet the following given at (3)

Bla, 8] C f7(B[f(a),¢]

As discussed above, it is equivalent to the following

f(z) € B[f(a),e] whenever z € Bla,6] — — — —(4)

Now, suppose {z,}2°, is any sequence of points in M; converging to a. i.e.
lim z,=a
n—roo

Therefore, for § > 0 there is some N € I such that,

p1(ZTn,a) <8, whenever n 2 N

. Tn € Bla,d8], whenever n>2 N --- (5)
Taking z = z,, in (4), it follows from (4) and (5) that,

f(zn) € B[f(a),e] whenever n 2 N

Therefore
Jim f(z,) = f(a)
Thus,
lim 7, =a = lim f(zn) = f(a)
This shows (b) => (¢} --- (6)

Conversely, suppose

lim z, =a ———>1}L11°10f(3:n) =fla) ---(7)

n—roc

If possible, suppose there exists some € > 0 such that the inverse image under f of B[f(a);¢€]
contains no open ball about a.

Therefore, for each positive integer n we have

1 .
B o] ¢ 7Bl d)
Therefore for each n € I there must be some z, € M; such that

s Bla )] but 5 g (BI@,)
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It implies that,
2n€ B ar| but o) ¢ Blf(a)d

Thus, get a sequence of points {z,,}32, in M, such that,
1
pilEn, @) < but  pa(f(za), f(a)) > ¢

1
. Since Lim — = 0 it is clear that

n—oo N

Jim =
But pa(f(x,) — f(a)) 2 € implies that
T}LIEO f(zn) # f(a)

This is a contradiction to our assumption. So, our supposition is wrong.

Hence, for a given € > 0 there exists some 4 > 0 such that

p2(f(z), f(a)) < € whenever pi(z,a) <$é
This shows (¢) = (b)) ---(7)

From (6) and (7) it follows that (b)) <= (c)

Hence
(@) <= () <= (9

39. Let (My,p), (My,p2) and (Mjs, ps) be metric spaces and let f: M; — M,
and g : M — M,. If f is continuous at a € M; and g is continuous at
f(a) € M, , then prove that go f is continuous at .

Proof:
As f: My = M, and g : My — M; the composite function g o f is defined by

(go f)(z) = g(f(x)), Vz € My

Now, suppose {:1:,,}:;0 is a sequence of points in M; converging to a € M.
Therefore,

lim z, =a
n—oo

Also, f is continuous at a. Therefore,
Jim f(zn) = f(a)
Since, g is continuous at f(a) € M, , we must have,
lim g(f(zn)) = g(f(a))
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This implies that,
Tim (g0 f)(@) = (90 )(a)

Hence, g o f is continuous at a

40. Let M be a metric space and let f and g be a real valued functions which
are continuous at a € M. Then prove that f+g, f—g. f.g are also
continuous at a. Furthermore, if g(a) # 0 then % is also continuous at a.

Proof:
Let (M, p) be a metric space. If f: M — R! and ¢ : M — R! are continuous at a € M then

lim f(z) = f(a) and lim g(z) = g(a)
Now,
lim(f + g)(z) = lim(f(z) + g(z))
= lim f(z) + lim g(z)

= f(a) + g(a)
= (f+9)(a)

As li_r’n(f +g)(z) = (f + g)(a) function f + g is continuous at a € M.

41. Prove that every function from F; into a metric space is continuous on

Ha

Proof:
We have the discrete metric space Ry with discrete metric defined by d: R x R where

1, 1z#y
dle,y) = {O if 2 =4

So, for any a € R we get

Bla,1] = {z € R/d(a,z) < 1}
= {z € R/d{a,z) =0}
Bla,1] = {a}

Let, f : R4 — M be a function definded on Ry into a metric space M. Now, for any a € R
and ¢ > 0 we have

f(a) € Blf(a), €
. a € f7(B[f(a),e])
- {a} € F7Y(BIf(a),€])
-, Bla,1] C f7(B[f(a),¢])
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This implies that, f is continuous at every a € R.

Hence, every function defined on R, is continuous.

42. Let f: R? — R be a function defined by f(z,y) = z, Vz,y € R%. Show
that f is continuous on RZ2.

Proof:
Here, f : R? — R is a defined by f(z,y) = z, Vz,y € R%.

Therefore, for any (a,b) € R? we have,

fla;b) =a
Therefore,
|f(:c,y) = f(a7b)| = |"E 7 a|

So, for any given € > 0 taking d = € we get
|f(z,y) — fa,b)| <€, whenwver |z—a|<§

Therefore, f is continuos at every (a,b). Hence f continuous on R?.

43. Open Set ]

Open Set:
A subset of G of a metric space (M, p) is said to be open in the metric space if for every z € G

(M, p)
/B[a, 7] Open Set : m

\

Bla,r| C G

there is some r > 0 such that
Blz,r| C G

44.  Prove that if (M, p) is a metric space then any open ball in M is an open
set.
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Let (M, p) be a metric space.
For any a € M and r > 0 consider the open ball Bla, r].
Let z € Bla,r]. Suppose p(a,z) = s. Clearly s < r.
As r — s > 0, we choose some positive number £ such that

t<r—s

Consider the open ball B[z, t].

Let y € Bz, t]. Now,

(M, p)

B[a,'r]
Blz,t] C Bla,r]

¥4

pla,y) < pla. z) + p(z, y)
<s+t
<s+(r—as)
<r

Since p{a,y) < r we have y € Bla, 7]

Therefore B[z, ] C Bla,r]

As z is any point in B[a, r|, we can say that Bla,r| contains an open ball for each of its mem-
bers. Hence, Bla, ] is an open set.

45. For the discrete metric Ry, find
(1) Ble; 2] (2) Bla;1/2] (3) Bla;1] (4) Bla; —1/6].

Answer:

For the discrete metric Ry

(1) Bla;2] = {z € R/d(z,a) < 2} = {z € R\d(z,a) =1 ord(z,a) =0} =R
(2) Bla; 3l = {z € R/d(z,a) < 3} = {z € R/d(z,a) = 0} = {a}

(3) Bla; 1] = {z € R/d(z,0) < 1} = {z € R\d(z,0) =0} = {a}

(4) The open ball does not exist as its radius must be postive.
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46. Let M =|[0,1] with usual metric (absolute metric). Find
(2) Blg; 3] (3) Bl7;30] (4) Blz: 7

42 7 70

Answer:
(1)
3[2,1] - (2—1&“) A, 1
e (—zi) N[0, 1]
=[0,1]
(2)

(3) B[7,30] = (

(4)

$—30,1+30)N[0,1] = [0,1]

S

[ 47.  Prove that in any metric space (M, p), both M and ¢ are open sets.

Answer:
In any metric space (M, p), For every z € M and r > 0 we have

Blz,r|C M

.. the set M is a neighbourhood of all its points.
M is an open set.

Moreover, there is no point in ¢ whose neighbourhood it cannot be.
¢ is also an open set.
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48. Let F be any non-empty family of open subsets of a metric space M.

Then prove that |J G is also an open subset of M.
GeF

Proof:
Here, F is a family of open subsets in a metric space M.

Let
H=|])G
GeF
If z € H then there is some G € F such that

r€G
As GG is member of F it is open in M. So there is some r > 0 such that
Blz,r]C G

;o Blza| & U G
GeF

;, Blar] ¢ H
Therefore, if € H then there is some open ball B[z, 7] such that Blz,r] C H.

Hence, H is an open set in M.

[ 49. Prove that every subset of R; is open. ]

Proof:
We have the discrete metric space Ry with discrete metric defined by d : R x R — [0, 00) where

1, fz#y
d(z,y) = {0 if z =

So, for any a € R we get

Ble,1] = {z € R/d(a,z) < 1}
= {z € R/d(a,z) = 0}
Bla,1] = {a}

As every singletone subset in a discrete metric space Ry is an open ball, it is open in Ry.
Now, consider any subset A of Rj.

We can express A as a union of the singletone sets of its own elements as follows.

4=z}

TEA
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As each {z} is an open set in Ry, we can say that A is a union of open subsets in RB;. IHence,
A is an open set.

[ 50. Is the intersection of an infinite number of open sets open? Justify! ]
Answer:
No.

Consider the infinite collection {(—%, %) / 1 is a positive integer } of open sets in R*

Here, .
N(-wa) -

Which is not open in R!.

51. If G; and G, are open subsets of the metric space M, then prove that
G1N Gy is also open in M.

Proof:
Here, G; and G5 are open subsets in a metric space M.

Ifz € GiyNGythen z € Gy and z € Ga.

Therefore, there exist some 7, > 0 and 73 > 0 such that
Blz,r] C Gy and Blz,r] CGa---(1)

For r = min{ry,r2} we have r < r; and r < ro,
Therefore,
Blz,r] € Blz,r1] and Blz,r] C Blz,r3]

Therefore, from (1) it follows that,
Blz,7r] CG1 and Blz,r] C Gq

B[.’L',’f'] C (Gl N Gz)
Therefore, if € G; N G, then there is some Bz, 7] such that Blz,r] C (G1 N Gs)

Hence, G; NG5 is also open in M.

52. Prove that Every open subset G of R can be written G = |J I,,, where
I, I, 15, ... are a finite number or a countable number of open intervals
which are mutually disjoint.

Proof:
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Let G be an open subset of R!. If z € G then there is an open interval I such that z € I C G
Let I, denote the largest such open interval containg z. Clearly,

G=UIx

reG

Now, if z € G and y € G then for the largest open intervals I, and I, containg x and y
respectively we must have
either I, =1, or I, NI, =0

For if I, # I, and I, N I, # @ then I, U I, is an open interval containing z. But then I, U I, is
be an open interval containing x which is larger than I.

This cotradicts our assumption that I, is the largest open interval containg x.

Finally, each I, contains a rational number. As disjoint open intervals cannot contain same
rationals it is possible to assosiate each interval with a unique rational. Also since there are
only countably many rationals, the disjoint open intervals I, are finite or countable in number.

Thus, G is a union of finite number or a countable number of open intervals which are mutually
disjoint.

53. Let (My,p) and (M2, p2) be two metric spaces and let f: M; — M,. Then
prove that f is continuous on M; if and only if f~'(G) is open in M;
whenever G is open in M.

Proof:
First suppose, f : M; — M, is continuous on M;. Consider an open subset G of M,.

If z € f71(G) then f(z) € G. As f(z) € G and G is an open subset of Mj, there is some open
ball B[f(x), s] such that
B(f(z),s] c G

Since, f is continuous at z there is some Bz, | such that
Blz,r] ¢ f(Blf(z),8]) - - - (1)

But
B[f(z),s] € G = f~(B[f(z),s]) C fHG)---(2)

From, (1) and (2} it follows that,
Blz,r] C f7(G)

Therefore, if x € f~!(G) there is some Blz, ] such that Blz,7] C f~(G)
Hence, f~1(G) is open in M; whenever G is open in M,.
Conversely, suppose f~!(G) is open in M; whenever G is open in M.

For any a € M; we have f(a) € M,.

39



For € > 0 consider the open ball B[f(a),e]. As the open ball B[f(a),€] is an open set in
M, by our assumption f~1(B[f(a),¢€]) is open in M;.

Therefore, as a € f~1(B[f(a), €]) there is some Bla, r] such that

Bla,r] C f7(B[f(a),e])
Thus, for every a € M; we can always find some Bla,r] such that Bla,r] C f~1(B[f(a), €]).

Therefore, f is continuous at every a € M.

Hence, f is continuous on M.

[ 54. Prove that every constant function f: R — R is also continuous. ]

Proof:
Let, f: R — R be a constant function defined by f(z) = &, a constant, Vz € R
Therefore, for any z,a € R,

|f(z) — fla)| =k — k[ =0

Therefore, For any € > 0, we always have

|f(z) — fla)| <€
. Therefore, For any é > 0.

|f(z) — f(a)] <€ whenever |z—a|<$d

Therefore, f is continuous at every a € R. Hence, f is continuous on R.

[ 55. Limit Point ]

Limit Point:
Let (M, p) be a metric space and E C M. A point z € M is said to be a limit point of E if
there is a sequence {z,}o, of points in E which converges to z. i.e.

lim z, =z
n—oo

56. Closure of a set.

Closure of a set:
Let (M, p) be a metric space and E C M. The set of all the limit points of E is called the
closure of E and it is generally denoted by E.
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[ 57. If E is any subset of the metric space M, then prove that F C F. ]

Proof:
Let (M, p) be a metric space and E C M. Let z be any point in E.

As the sequence
i T N

of points in E converges to z, point x is a limit point of E.

Therefore, every point of E is a limit point of E.

Hence, -

ECF
[ 58. Closed set ]
Closed Set

A subset of a metric space is said to be closed if it contains all its limit points. In other words,
if M is a metric space and E C M then F is closed subset of M if

ECE

Note:
If M is a metric space and E C M then we always have E C E. So in case F is a closed subset
of M then we have il .

EFECcFE and ECE

Hence, E is closed iff £ = E

59. Let E be a subset of a metric space M. Then prove that a point z € M
is a limit point of E iff every open ball B[z;r| about z contains at least
one point of .

Proof:
Let E be a subset of a metric space (M, p).

First suppose, z is a limit point of E.

Therefore, there is a sequence of points {z,} in E which converges to x. Therefore, for any
given r > 0 there is some positive integer N such that

p(Ln,z) <r whenever n>2 N
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This implies that
Z, € Blz,r] whenever n> N

As each z,, € E we conclude that B[z, | contains atleast one point of E.
Conversely suppose for each r > 0, B[z, r] contains atleast one point of E.

Let z; € E such that z; € Bz, 1],
Zp € E such that z; € Bz, 1]

z3 € E such that z3 € Bz, E]

1
Continuing similarly for each positive integer n, we get z,, € E such that z,, € Bz, ﬁ]

Thus, we get a sequence {z,} of points in E such that,

1
37 < 'y v
P(Zn,2) < —, V1

1
Since, 1i_1>n — 0 it follows that, sequence {z,} of points in E converges to z.
n—rod

Hence, z is a limit point of E. We get a sequence {z,} of points.

60. If E is any subset of the metric space M, Then show that E is closed.

Proof: i)
To prove that E is closed, we shall show that E = E

Since E C E, it remians to show that E C E.
Consider any = € E. Since 7 € f, z is a limit point of E.

Therefore, any open ball B[z, ] contains a point y € E.
Let s = p(z,y) and choose any positive number ¢ with ¢t < r — s.

Since y € E, y is a limit point of E.
Therefore, the open ball B[y, 1] contains a point z € E.
Now,

plz,2) < plz,y) + ply, 2)
<s+t
<s+f{r—s) (.t<r—s)
=
plz,z) <r
Hence, z € Bz;r].
Thus, for each z € E, every open ball Bz;r] contains a point in E.
Therefore each z € E is a limit point of E.

.xreE=zx€eFE
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Therefore,

kx|
N
]

Hence,

|
Il
5]

Therefore, E is a closed set.

61. Prove that in any metric space (M, p), the set M and @ are closed sets.

Proof:

In any metric space (M, p), for each z € M every open ball B[z, | always contains a point of
M, as Blz,r] C M. Therefore, every x € M is a limit point of M. Therefore M = M. Hence
M is closed in M.

Also, empty set @ has no limit points. Therefore it is closed.

62. If Fi and F; are closed subsets of the metric space M, then prove that
Fi U F; is also closed.

Proof:
If z € F1 U F; then z is a limit point of F} U Fj.

Therefore, there is a sequence {z,} of points F; U F; converging to x.

In that case, {z,} must have a subsequence consisting of all its points in F} only or a subse-
quence consisting of all its points in F;, only, converging to z.

This implies that either z € F; or z € Fj.
Therefore,

reFUFR

As I, and F; both are closed in M, we have, F| = F| and F; = F. Therefore,
T e Fl U Fz

. Hence ,
FiUF, C FLUPF,

Therefore, F; U F; is closed.

[ 63. Is it true that arbitrary union of closed sets is also closed? Justify! ]
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Answer:
No, It is not neccessary.

In the metric space, B* Consider the collection

(o-2Jmer)

Here, all the closed intervals are closed in R'.

But

91 [%,3— %] = (0,3)

Which is an open set.

Thus an arbitrary union of closed sets is not necessarily closed.

64. If F is any family of closed subsets of a metric space M, then prove that

| F is also closed.
FeF

Proof:
Let F be any family of closed subset of a metric space M.

If z € [ F then z is a limit point of (] F
FeF FeF

Therefore, any open ball B[z, r| contains atleast one point, say ¥, of [ F
FeF

Therefore, B[z, r] contains atleast a point y of each F' in F.

This implies that z is a limit point of each F' € F Therefore,

yeF, YFeF

But F = F as each F is a closed subset of M.

Therefore,

yeF, VFeF
Hence,

T E ﬂ F
FeF

Thus, we have

(NFc(F

FeF FeF



Hence, (] F is a closed subset of M.
FeF

This proves that arbitrary intersection of closed set is closed.

65. Prove that a subset GG of the metric space M is open iff compliment of
G is closed.

Proof:
Let (M, p) be a metric space.

First suppose G is an open subset of M.

Now, to show that F' = M — (G is a closed subset of M it is sufficient to show that F' contains
all its limit points.

For this we shall show that G cannot contain any limit point of F'.
Consider £ € G. As G is open in M there is an open ball B[z, r| such that
Blz,r] C G

Therefore,
Blz,rInF =10

Thus, there is an open ball B[z, r| which does not contain any point of F'. This implies that x
cannot be a limit point of F'.

Hence, I must contain all its limit points. Therefore, F' = M — G is closed whenever G is open.
Next, suppose F' is a closed subset of M. Therefore it must contain all its limit points.
Let G=M—F. So,if r€ Gthenz & F.

Therefore, x cannot be a limit point of F. But then there must be some open ball centered at
x, say Blz, ]|, such that Bz, r] does not contain any point in F. Therefore,

Blz,r|C G

As x is any point in G, we conclude that G = M — F' is open whenever F is closed.

66. Let (Mi,p1) and (M,,p:) be metric spaces and let f : M; — M,. Then
prove that f is continuous on M; if and only if f~!(F) is closed subset of
M, whenever F is a closed subset of M.

Proof:
First, suppose that f: M; — M, is continuous on M,

Now, if F is a closed subset of M, then its complement F' = M, — F' is open in M.
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Since, f is continuous on M;, we must have f~1(F") open in M;.
Also,

FUF =Myand FNF' =0
STHEUFYy = [~ (M)
FHEYUFY(FY=M
FUF) =M, — fH(F")

As f~1(F") is an open subset of M, its complement f~1(F) is closed in M.
Conversely, suppose f~'(F) is closed subset of M; whenever F is a closed subset of M.
Let G be an open subset of M. Therefore F' = My — G is closed in M.

Also,

FUG=M,and FNG=0
FHFEUG) = [T (M)
AR VG =M
UG =M — fHF)

As f~'(F) is a closed subset of M, its complement f~1(G) is open in M;.
Thus, f~1(G) is open in M; whenever G is open in M,.

Hence, f is continuous on M;.

[ 67. Homeomorphism ]

Homeomorphism:

Let (Mi, ;1) and (Ma, p2) be two metric spaces. A function f is said to be a Homeomorphism
from M; onto M if f : M; — M, is one-one and M; onto M, and possess all the following
equivalent propertires.

(1) Both f and f~' are continuous.

(2) A set G C M, is open 4ff its image f(G) C M, is open.

(3) A set F' C M, is closed iff its image f(F) C M is closed.

[ 68. Dense Set ]

Dense Set: ~
Let (M, p) be a metric space. A subset A of M is said to be dense in A if (4) = M.
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69. Show that no proper subset of R; is dense.

Answer:
In Ry, the discrete metric space on R, we have the discrete metric defined by,

1., i x#y

Now, let A be a non-empty proper subset of R;. There are some members of B which are not

in A.
If z € R— A and y € A then clearly z # y. Therefore,
d(z,y) =1
As, Blz,1] = {y € R/d(z,y) < 1}, it cannot contain a point of A.
Therefore, any point z in R — A cannot be a limit point of A.

Therefore,

A+R
in Ry,

Hence, no proper subset of R, is dense.

70. Give an example of a set F such that E and its compliment are dense in

R.

Answer:
Let E = {z € R/x is a rational number }. Therefore, the complement of E is

E=R-E
,which is the set of all irrational numbers.

As, every open interval containing any real number contains infintely many rationals as well
as irrationals, all the real numbers are limit points of E and E’ both.

Therefore, B o
E=R and E'=R

Hence, E and its complement E’ both are dense in R.

[ 71. Prove that any finite subset of a metric space is closed. ]
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Proof:

Let A be a finite subset of a metric space (M, p). Suppose A = {z;,2s,...

If z € M — A then define,

r = min{p(z, 1), p(%, T2), - . ., p(T, Tn) }

Clearly,
r<plz, %), Vi=1,2,...,n

As Blz,r] = {y € M/ p(z,y) <, } it cannot contain any point of A.
Therefore, no point of M — A can be a limit point of A.

Therefore, o
A=A

Hence, A is closed.

Thus, every finite subset of a metric space is closed.
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