T.Y.B.Sc. : Semester - V
US05CMTH22(T)

Theory Of Real Functions

[ Syllabus effective from June , 2020 ]

Study Material Prepared by :
Mr. Rajesh P. Solanki
Department of Mathematics and Statistics
V.P. and R.P.T.P. Science College, Vallabh Vidyanagar

Unit:1
Limits , Continuous Function , Functions Continuous on Closed and Bounded Intervals , Uni-
form Continuity ,Derivability of a Function , Properties of Derivable Functions.

Unit:2

Increasing and Decreasing Functions , Darboux Theorem , Rolle’s Theorem , Lagrange’s and
Cauchy’s Mean Value Theorems , Taylor's Theorem with Lagrange’s Form of Remainder and
Cauchy’s Form of Remainder , Maclaurin’s Theorem , Generalized Mean Value Theorem , Tay-

lor’s and Maclaurin’s Series Expansions of Exponential and Trigonometric Functions , log(1+z)
and (1+ z)*

Unit:3

Functions of Several Variables: Explicit and Implicit Functions , Continuity , Partial Deriva-
tives , Differentiability , Partial Derivatives of higher order , Differentils of Higher Order,Functions
of Function

Unit:4
Change of Variables, Taylor’s Theorem and Maclaurin’s Theorem for Function of Two Vari-
ables ; Extreme Values of Functions of Two Variables.

Recommended Textbooks :
1. Principals of Real Analysis
Author : S.C.Malik
Publisher : New Age International, New Delhi
Edition : 3rd Ed.
Edition : Ch. 15,6,11 (Except 11.11).
Recommended Reference Books :

1. Elementary Analysis : The Theory of Calculus
Author : K.A.Rose
Edition : 2009
Publisher : Springer (SIE), Indian reprint



2. Introduction to Real Analysis
Author : R.G.Bartle,D.R.Sherbert
Edition : Third Edition
Publisher : Wiley India Pvt.Ltd.New Delhi

3. A Course in Calculus and Real Analysis
Author : S.R.Ghorpade and B.V.Limaye
Edition : 2006
Publisher : Springer

4. Introduction to Analysis
Author : A.Mattuck
Edition : 1999
Publisher : Prentice Hall

5. Mathematical Analysis
Author : S.C.Malik and Savita Arora
Edition : Second Edition, 2000
Publisher : New Age International Pvt. Ltd., New Delhi

6. Real Analysis
Author : Dipak Chatterjee
Edition :
Publisher : Prentice -Hall India Pvt. Ltd.New Delhi



US05CMTH22(T)- UNIT : I

1. Limit of a function

Limit of a function :
Let f be a function whose domain contains a neighbourhood of a real number ¢ and [ be a
fixed real number. If for each ¢ > 0 there exists some ¢ > 0 such that

|f(z) —I| < e whenever |z —¢| <
then [ is said to be the limit of f as z tends to ¢ and it is written as

lim £(z) =

Remark:
We know the following equivalence
z—c<deze(c—bectd)c—d<z<td

similarly,
|lf(@)—Il|l<eeflz)ell—¢glte)l—c<z<ite

Hence, the € — § condition in the definition of limit can be expressed by replacing |f(z) — |
and |z — ¢| < 6 by their equivalent forms.

So, any of the following conditions can replace the condition used in the definition.
f(z) e (Il —¢€,l+¢€) whenever z € (¢ —4,c+6)

and
|f(z) — | < ¢ whenever c—d <z < 44

[ 2 Left Hand Limit ]

Left Hand Limit of a function :

Let f be a function and ¢ be real number such that domain of f contains some interval (a, ¢).
A real number ! is said to be the limit of f as z tends to ¢ from left, if for each € > 0 there
exists some § > 0 such that

|f(z) — | < e whenever z € (c—6,¢)
In symbols it is written as follows,

lim f(z)=1

r—c—
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[ 3. Right Hand Limit ]

Right Hand Limit of a function :

Let f be a function and ¢ be real number such that domain of f contains some interval (c, a).
A real number [ is said to be the limit of f as x tends to ¢ from right, if for each € > 0 there
exists some ¢ > 0 such that

|f(z) — | <€ whenever z € (c,c+§)

In symbols it is written as follows,
lim f(x) =1

r—rct

[ 4. An important result ]

An important result

SRt =it Sds i o

[ 5.  Prove that limit of a function is unique, if it exists. ]

Proof
Suppose lim f (z) exists and lim f(z) =& and lim f(z) = I

Therefore, for any € > 0 there exists some 4 > 0 such that
|flz) — L] < g whenever 0 < |z —a| < §
and

€

@) —tal < &

whenever 0 < |z —a| < §

Now,

s — b = [l — f(z) + fz) — b
= [(l — f(@)) + (f(z) — )|
< b = f(@)] + [ f(z) — L
= [f(z) — L] + |f(z) — &l

EL €
2 2
|ll —12| <€



As € is any positive number and |l; — 5| < e it follows that the non-negative number |I; — Iy
is less than every positive number.
This implies that [{; — I3| = 0, hence

h=1

Which proves that there cannot be more than one limits.
Hence, lim f(z) is unique if it exists.
r—a

6. Let f and g be two functions defined on some neighbourhood of a such
that IEn f(z)=1and 1i_r>n g(z} = m. Prove the following.

[1] lim [£(z) +9(a)] =i +m

Proof
Here,

lim f() ~ 1

Therefore, for each € > () there exists some &, > 0 such that
|f(z) -1 < % whenever 0 < |z — a| < &;

Also as lim g(x) = m, for the same ¢ there exists some d; > 0 such that
TG

lg(z) —m| < % whenever 0 < |z — a| < d;

If we take, § = min{d;,d2} then § < §; and & < &,.
Hence, 2
|[flz) =1 < 5 whenever 0 < |z —a| < 4
and ’
lg(z) —m| < 2 whenever 0 < |z —a| < 6
Therefore for 0 < |z —a| < 4,
[(f(z) + g(2)) — (1 + m)| = |(F(z) — 1) + (g(z) —m)|
< |f(@) =1+ |g(z) — ml
€L €
2 2
S A(F (@) +9(2) — (T+m)| < e

Since
|(f(z) +g(z)) — (I +m)| < e whenever 0 < |z —a| < §

we conclude that,
m(f(z) + g(@)] = L+ m

3



[2] lim [£(2) ~ g(@)] =1 —m

Proof
Here,

lim f(z) =1

T—a

Therefore, for each € > 0 there exists some & > 0 such that
If(z) — 1| < % whenever 0 < |z — a| < 0,

Also as lim g(z) = m, for the same e there exists some d; > 0 such that
T—a

lg(z) —m| < % whenever 0 < |z — a| < da

If we take, 6 = min{d;,d2} then J < &; and & < és.
Hence,

|f(z) =1 < % whenever 0 < |z —a| < 4

and
lg(z) —m| < % whenever 0 < |z —a| < §

Therefore for 0 < |z — a| < 6,

((f(@) = g(=)) — ( =m)| = [(f(2) = 1) + (m — g(=))|
< |f(z) =1+ |m — g(2)|
|F(@) — 1] + |g(z) —m|

<e+e
2 2

cA(f(z) —g(2)) — (I —m)| <e

y/

Since
|(f(z) — g(x)) — (I — m)| < e whenever 0 < [z —a| < §

we conclude that,

lim[f(z) — g(z)] =1 —-m

Ta

8] lim [f(@)g(z)] = Im

Proof



We have,
|f(z)g(z) — Im| = |f(z)g(z) — g(z)! + g(x)l — Im)|

= |9(@)(f(z) — 1) +(g(z) — m)]
< lo(@)(f(@) = )| + i o(z) — m)|
< lg(@)].|£(=) = 1| + [1].|g(z) — m)|

| f(2)g(z) — Im| < lg(2)].|f(2) — 1| +[1].lg(z) —m| ---(1)

As lim g(z} = m, for € = 1 there exists some §; > 0 such that
r—a

|g(z) —m| <1 whenever 0 < |z —a| < &
Now,
9(z)| = |g(z) —m +m|
< |g(z) — m| + |m|
€1+ [m| when0 < |z —a| <

Therefore, |g(z)| < |m|+ 1 whenever 0 < |7 —a| < 6

So for 0 < |z — a| < &1, from (1) we have,

|f(@)g(z) — lm| < (|m| +1).|f(z) = 1| + |i|-lg(z) = m| ---(2)
Again considering the limits

lim f(z) =1 and llmg( )=m

T—ra

for each € > 0 there exists some d, > 0 and 63 > 0 such that

f() =1l <

whenever 0 < |z —a| < &,

€
2(|mn| + 1)
and

lg(z) — m| < m whenever 0 < |z — a| < 03

If we take, d= min{61,62,63} then 4 \<.. 61, /) ~.<.. 52 and 4 \<.. 63.
Hence,
If(z)—1| < 2(|m'|€7+1) whenever 0 < |z —a| < &

and .
lg(x) —m| < S+ 1) whenever 0 < |z —a| <

Therefore, for 0 < |z — a| < 6 from (2) it follows that,
|f(2)g(z) — m| < (Im| + 1).
€€
2 2
Sf(@)g(z) —lm| < e

+ 1.

2(jm[ +1) |+1) 2(]1] +1)



Since
|f(z)g(z) — Im| < e whenever 0 < |z —a| < §

we conclude that,
lim £ (2)g(a) = Im

—m g(:(:)
Proof
We have
) _L]_|mft)lto
glz) m mg(z)
_ mf(z) — lm + lm — lg(z)
mg(z)
_ |m(F@) — 1) +1(m — g(=))|
|m||g(z)|
< Imili(z) — l| ]|g(z) — m|
5 |m||g(x)] lm||g(z)|
flo) 1] - |I] 215
" ola) J < G 1+ e -l ==~

As m # 0 we have |m| > 0, hence — i >0
Since, lim g(x} = mn there exists some 4; > 0 such that
r—a

lg(z) — m| < lzﬁ whenever 0 < |z —a| < §
Now,
Im| = |m — g(z) + g(=z)|
< lg(z) — m| + [g(z)]
<4 o)
m
ml 7 << Jg(z)
"l < lota)
2
Therefore, whenever 0 < |z —a| < §;

I()I m]



So for 0 < |z — a| < 41, from (1) we have,

f@) 1|, 2 2l
o = | < @ =1+ ygla@ =l - - 2

Again we consider the limits

lim f(z) =1 and hm g(w)

T+a

Therefore, for each € > 0 there exists some d; > 0 and J; > 0 such that

|f(z) -1 < El4ﬂ| whenever 0 < |z — a| < d;

and

2
lg(z) —m| < % whenever 0 < |z — a| < &3

If we take, § = min{d;, 2,83} then § < 41, 6 < 63 and § < ds.

Hence,
€lm|
| 4

|f(z) =1l <

whenever 0 < |z —a| < §

and L
lg(z) — m| < % whenever 0 < |z —a| < §

Therefore for 0 < |z — a| < ¢ from (2) it follows that,
L) 2 (dml), M dmP )
glzg) m| |m|\ 4 [l \4(|i +1)

LE +( H )e
1| +1

o8
2 2
18- <
glz) m
Since ;
'M——‘<ewhenever0<|:r—a|<5
g(z) m

we conclude that,

lim —— /() i
z—a g(m) m

7. Continuity at an interior point

Continuity at an interior point:
A function f is said to be continuous at a point ¢ € {a, b), if

lim f(z) = f(c)
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In other words, the function f is continuous at ¢ € (a,b) if for each € > 0,3 some § > 0 such
that

|f(z) — f(e}] <€, whenever |z—¢| <0

[ 8. Continuity from the left

Continuity from the left
A function f is said to be continuous from left at a point ¢ if the limit lim f(z) = f(c)
T—re—

[ 9. Continuity from the right

Continuity from the right
A function f is said to be continuous from right at a point c if the limit HIE_,_ f(z) = f(c)
z—>

[ 10. Continuity at an end point ]

Continuity at an end point
A function f is said to be continuous at the end point @ of a closed interval [a, d] if it is right
continuous at a, i.e.

lim f(z) = f(a)

r—a+

Also, f is said to be continuous at the end point b, if it is left continuous at b, i.e.

lim /(@) = /()

[ 11. Continuity in an interval ]

Continuity in an interval
A function f is said to be continuous in an interval if it is continuous at every point of the
interval.

12. If f and g are two functions which are continuous at ¢ then prove that

f+g, f—g, fgand 5 are also continuous at a

Here, f and g are two functions which are continuous at a¢. Therefore
lim f(z) = f(a) and lim g(z) = g(a)

10



Now we shall prove continuity of f+ g at c.
lim(f + 6)(2) = lim[/(2) + 9(a)]
= lim f(z}) + lim g(x)

= f(a) + g(a)
= (f +9)(a)

As,
lim(f + g)(z) = (f + 9)(a)

f + g is continuous at a.

Similarly the continuity of f — g, fg and i can be proved.
g

13. Evaluate : lim &T2B271)
g==1 T4+ 4r—2

o @+2EE—1) _ (C14+9B(D-1) _ @)= _

1
z—+—1 243z —2 (—1)2+3(-1)—2 —4
14. Evaluate : lim —M
z—0 o
. i+ -2 . VA4+zTz—2 JA4+x 42
lim— = lim X
z—0 T z—0 T Vi+1+2
y 14+xz—14
= lim
20 z(v/4 + z + 2)
1
LSty - SY_LATT
20 /A 1 7 + 2
1
14
1
Ex

15. Evaluate : lim —
20 ooy + 1

We shall evaluate left-hand and right hand limits separately.

1
z—=30-=> - — -0
z

=es 50 (becausee>1)

11



1

Therefore, lim leE = i =
30— ez 41 0+1

Also,
1
z—>0+= z — +oo
= e= - 400 (because e > 1)
=e s 0
Therefore,
: e ; 1
lim = lim
230+ ex }1 a0 ] tfew
sk
140
=
Since,
et o
lim lim

1
lim -§*— does not exist.

z—0 ex 41

[ 16. Sequence. ]
Sequence

A function f: N — R, whose domain is the set of natural numbers and the range is subset

of real numbers is called a sequence of real numbers. f(1), f(2),... are called the 1,2 ...

terms of the sequence.

Generally, a sequence is represented as follows,
Q1,89,...,85,...
and instead of using the function notation it is denoted by

{a.}

[ 17. Limit of a Sequence. J

Limit of a Sequence { Or Convergence of a Sequence )

Let {cn} be a sequence of real numbers. If for a fixed real number ¢, to every € > 0 there exists
some positive integer m such that

len, — €] < € whenever n 2 m

then sequence {c.n} is said to be convergent to ¢ or equivalently c¢ is said to be the limit of
sequence {cn} and in symbols it is witten as

lim e, =c¢
n—o0

12



18. Show that a function f: [a,b] — R is continuous at point ¢ of [a,b] iff

Iim ¢, = ¢ = lim f(en) = f(c)

Proof :
Suppose, a function f is continuous at a point ¢ in an interval I.
Therefore, for any given € > 0 there exists some 4 > 0 such that

|f(z) — f(c)] < € whenever |[z—c|<é ---(1)
Now, let {Gn,} be a sequence of points in I converging to c.

i.e.
litn &, = &

n—c0
Therefore, for > 0 there exists some positive integer m such that
lc. —¢| < 4, whenevern2zm ---(2)
Taking z = ¢, in (1), from (1) and (2) it follows that,
|[f(cn) — fc)l <€, whenevern2m  ---(3)

Therefore,

r}l{lolo f(cn) = £(c)

whenever lim ¢, = ¢

n—o0

Now, let us prove the converse by assuming

lim ¢, = ¢ == lim f(c,) = f(c)

TI—ro0 —»00

If possible, suppose f is not continuous at c.

Therefore, there must be some ¢ > 0 such that for any choice of § > 0 there is atleast one x € [
such that
|f(z) — f(c)| 2 € when |z—¢c/<d ---(4)

Taking 6 = 1 in (1), we must have some z = ¢; € I such that

[f(e1) — f(e)| > € when [e;—c| <1

Again, taking d = — in (1), we must have some x = ¢, € I such that

bO | =

1

[f{e2) — f(c)| 2 € when |ca—c| < 3

13



Similarly, taking § = = in (1), we must have some z = ¢z € I such that

=Chl

1

|fcs) — f(c)| = € when [c3—c| < 7

1
Continuing in this manner by taking § = " for each positive integer n, we shall get a sequence
{en} of points in I such that,

|f{en) — f{c)] 2 € when |e, —¢| < %

1
As lim — =0, clearly lim ¢, =¢
n—oc 71 n—oo

But, on the other hand for each ¢, we always have,

|flen) = Flo)| 2 €

It follows that,

im f(cn) # f(c)
n—eo
This contradicts our assumption. Therefore our suppossion that f is not continuous at ¢ is
wrong.
Hence, if
lim ¢, = ¢ => lim f(c,) = f(c)
n—oo n—o0
then f is continuous at c.
[ 19. Discontinuity ]

Discontinuity
A function f is said to be discontinuous at a point ¢ if it is not continuous there at.

[ 20. Removable Discontinuity ]

Removable Discontinuity:
If for a function f and ¢ € R the limit ]_iin f(z) exists but ].i£1 f(z) is not equal to f(c), which

may or may not exist, then f is said to have a removable discontinuity at c.

[ 21. Discontinuity of first kind ]

Discontinuity of First Kind:
A function f is said to have a discontinuity of first kind, if both the limits

lim f(z) and lim f(z)

r—ra— r—ra+

exist but are not equal.

14



22. Discontinuity of first kind from left.

Discontinuity of First kind from left:
A function f is said to have a discontinuity of first kind from left at z = ¢ if the limit

lim f(z)

r—rc—

exists but is not equal to f(e).

[ 23. Discontinuity of first kind from right. ]

Discontinuity of First kind from right:
A function f is said to have a discontinuity of first kind from right at z = c if the limit

lim f(z)

r—c+

exists but is not equal to f(c)

[ 24. Discontinuity of second kind. ]

Discontinuity of Second kind:
A function f is said to have a discontinuity of second kind at = = c if neither lim f(z) nor

. . T—C—
xl_l}r{r:l_l_ f(x) exists.
[ 25. Discontinuity of second kind from left. ]

Discontinuity of Second kind from left:
A function f is said to have a discontinuity of second kind from left at z = c¢ if the limit

lim f(z)

T—rCc—

does not exist.

26. Discontinuity of second kind from right.

Discontinuity of Second kind from right:
A function f is said to be have a discontinuity of second kind from right at z = ¢ if the limit

lim f(z)

z—re+

does not exist.

’

27. Examine the following function for continuity at x =0

1
Hop={ T T 9
0, when z=10

135



Let us evaluate the left-hand and right hand limits separately.
We have,

1
z—=20-= - —-00
z

= ex —0 (becausee>1)

zes 0.0
Therefore, lim - =——=0
e20—14+ex 140
Therefore,
g fle) =0
Also,

i
z—=>0+=>—-— +oo
%

= €% — +00 ( because e > 1)

= ez =0
Therefore,
1
g ICw 3 T
lim - = lim —
z—0+ ] + ez e+ 73 -+ 1
-~ 20
C0+1
=0
Therefore,
:511>I([)1+ f(x) —
Since,
1 i
ze= ze=

:::1—1)%1— ez |+ 1 03 zl—lrI(IJ:l+ B% + ]_f(O) = O

lim f(z) = £(0)

z—0

Hence, f is continuous at z =0,

’

Also discuss the kind of discontinuity, if any.

—? ifz<0
5z —4 if0<cz<g1
472 -3 ifl<zr<?2
3r+4 ifr>2

flz) =

28. Examine the function f(z) defined as follows for continuity at z = 0,1, 2.

Atx=0
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Here, f(0) = 0.

Now,
g T - _
g fle) = i (=) =0
and
Since,

lim £(z) # Jim 1(2)

z—0+
f is discontinuous at z =0

Also, it is a discontinuity of first kind as the left-hand and right-hand limits both exist but
they are not equal.

Atx=1
Here, f(1) =5(1) -4 =1.
Now,

mll)lr{tf(:c) =m]iq1ﬁ59: —4=5—-4=1
and

i = li 2 _ =d—3 =

zllH1+ flz) = m1_1’1}1+ 4z —3Jr=4-3=1

Since,

lip £(z) = lim £(e) = 11

=0+

f is continuous at z =1

At x=2
Here, f(2) =3z + 4 =3(2) + 4 =10. Also,
” T 2 il . mil
m]iglﬁ flz) = ml_lgi 47° — 3z = 4(4) — 3(2) = 10

and
lim f(z)= ,,1_1,%1+3$ +4=3(2)+4=10

T2+

Since,

lip £(z) = lim £() = 1)

0+
f is continuous at z = 2

29. If [z] denotes the largest integer less than or equal to z, then discuss the
continuity at z = 3 for the function f(z) =z —[z], V2 >0,

We have,
lim z-[z] =3-2=1
z—3—
and
limz—[z]=3-3=0
>3+
As,

a:l—lgl— == [HS] 7[_- :c]igl+ = [IB]

17



f(z) is not continuous at x = 3.

30. Prove that the function f defined on R as follows is discontinuous at
every point.

f(z) = 1 when x is irrational
" ]-1 when x is rational

Proof
Here, f is defined by

1 when x is irrational
flz) = .
—1 when x is rational

First, let a be a rational number. By the definition of f we have

fla)=-1

We know that, in every interval there are infinite number of rationals as well as irrationals.
1

Therefore, for each positive number n we can choose an irrational number a,, in (a el + )

n
so that,

|a, —a] < =
n

As a,, is an irrational we have f(a,) = 1.

Since, lim 1 =0, we must have lim a, =a
n—roc n—oc

Now,
LRl el -
Therefore,

Jim flan) # (@) (. (@) =-1)

Hence, lim a, = a but lim f(a,) # f(a).
n—oe n—>o00
Therefore f is not continuous at any rational number.

Next, let a be an irrational number. By the definition of f we have
fla)=1
We know that, in every interval there are infinite number of rationals as well as irrationals.
1 1
Therefore, for each positive number n we can choose a rational number a,, in (a — 0 + )

n
so that,

1
la, —a| < —
n

As a, is a rational we have f(a,) = —1.

18




Again, as lim % = 0, we must have lim a, =a
n—oc n—oo

Now,
lim f(a,) = lim (—1)=-1

n—o0 n—o0

Therefore,

Tm flan) # f() (- (@) =1)

Hence, lim a, = a but lim f(a,) # f(a).
n—00 n—rod

Therefore f is not continuous at any irrational number also. Thus, f is not continuous at
any real number.

31. Prove that the function f defined on R as follows is continuous only at
z=0.
z when x is irrational
flz) = -
—z when x is rational

Proof
Here, f is defined by

£  when x is irrational
f(z) = {

—z when x is rational

First, let o be a non-zero rational number. By the definition of f we have

fla)=—a

We know that, in every interval there are infinite number of rationals as well as irrationals.
1

Therefore, for each positive number n we can choose an irrational number a,, in (a o a+ )

n
so that,

1
lan —a] < =
n

As a, is an irrational we have f(a,) = an.
Since, lim % = 0, we must have lim a, =a
n—roc n—roe

Now,

lim f(a,) = lim @, =a
n—o0 n—oo

Therefore,

lim f(a) # (@) (. f(a) = ~a,a£0)
Hence, lim a, = a but lim f (an) # f(a).

Therefore f is not continuous at any non-zero rational number.
Next, let a be an irrational number. By the definition of f we have

fla)=a
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We know that, in every interval there are infinite number of rationals as well as irrationals.
o, . . 1 1

Therefore, for each positive number n we can choose a rational number a,, in (a = a+ ﬁ)
so that,

1

la, —a| < =

n

As a, is a rational we have f(a,) = —a,.

Again, as lim 1 = 0, we must have lim a, =a
n—eo n—oo

Now,
i f (o) = Lz (~0n) = —a

Therefore,

lim f(a,) # fa) (- f(@)=0)

Hence, lim a, = a but lim f(a,) # f(a).
n—o0 T—00
Therefore f is not continuous at any irrational number also.

Finally, let us examine continuiy of f at z =0
We have

f0)=0
Now, for every real z, we have
|f(@)| = |=|

Therefore, for any given € > 0 we can take é = e so that
|_f(m) = .f(o)l < € whenever |$ - 0| <§
Therefore,

lim f(z) = f(0)

z—0

Hence, f is continuous at z = 0.

Thus, f is continuous at zero and at no other real numbers.

32. Obtain the points of discontinuity of the function f, defined on [0,1] as
follows

f0)=0, f(3) =3, f(1)=1and

l_z if0o<z<l
= 13 2
/(@) {g—x if ;<z<1

Also examine the kind of discontinuities.

1
The function has changes in its polynomial rules at 0, 2 and 1. So, we shall examine the

continuity at these points only.
Atx=0
As 0 is the left boundary of the closed interval [0,1], we need to examine only the right
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continuity at 0. Here, f(0) = 0.
Now,

r—04 z—04+

H — 3 1 —_ _1
lim f(z) = lim (2 w) =3
Since,

lim f(@) # £(0)

f is not right continuous at z =0

Also, it is a discontinuity of first kind from right as the right-hand limit exists but it is not
equal to f(0).

1
At x= =
X=3

As % is an interior point of the closed interval [0, 1], we shall examine the left-hand as well as
right-hand limits. Here, f(1) = 1.

Now,
1 il 0 |
Jm fle) = lm (a—x) =37 370
Also,
3 S
1 — 1 _— R 1
Foves ) (2 5”) 2
Since,

gimey i) i

:E—)i-l-
f is discontinuous at z = 3 and the discontinuity is of first kind.
At x=1
As 0 is the right boundary of the closed interval [0, 1], we need to examine only the left conti-

nuity at 1. Here, f(1) = 1.
Now,

; : 3 3 1
i )= Jim (5-2) =313
Since,

Jm £(a) # 1)

f is not left continuous at z =1

Also, it is a discontinuity of first kind from left as the left-hand limit exists but it is not
equal to f(1).

[ 33. Bounded Above Set. ]

A set S is said to be a bounded above set if there exists some real number k such that
r< k,VxeS
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Here, k is called an upper bound of S.

[ 34. Bounded Below Set. ]

A set S is said to be a bounded below set if there exists some real number & such that
k<z,Vzes§

Here, k is called a lower bound of S.

[ 35. DBounded Set.

A set S is said to be a bounded set if it is bounded below as well as bounded above set.

[ 36. Bounded Function ]

A real valued function f is said to be bounded if its range is a bounded set.

[ 37. Interior Point of a Set and Neighbourhood of a point ]

Interior Point of a Set and Neighbourhood of a point
A real number @ is said to be an interior point of a set S if there exists some open interval 1
such that

aclcCS
Here, S is called a Neighbourhood of a.

[ 38. Limit Point of a Set ]

A real number £ is said to be a limit point of a set S if every neighbourhood of £ contains
infinitely many points of S.

Remark:
Equivalently, we can say that £ is a limit point of S if every neighbourhood of £ contains
atleast one point of S other than £.

[ 39. Limit Point of a Sequence ]

A real number £ is said to be a limit point of a sequence {s,} if every neighbourhood of £
contains infinitely many TERMS of sequence {s,}.

[ 40. Show that a continuous function on a closed interval is bounded.
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Proof
Let a function f be continuous on a closed interval I = [a, 8].

If possible suppose f is not bounded above.
Therefore, for any positive number G there must be some value of f(z) exceeding that positive
number. In other words for each G > 0 there must be some z € [a, b] such that

G < f(z)
Hence, for each positive integer n we can always find some z,, € [a, b] such that,

n < f(zn)

Since, {:cn} is a sequence of points in a closed interval [a, b] it is bounded. Therefore, by the
Bolzano-Weierstrass therorem for sequence, there is a limit point of the sequence , say, £. As
the closed interval [a, b] is a closed set, we must have

£ € a,b]
Because £ is a limit point of {z,}, there must be a subsequence, say {z,, };,, such that
li =
Jim 5, =6
As for each z,, we have n; < f(%,,), it follows that
Jim ) =

Thus,
lim z, =& but kll,m I (@n,) # F(E)

k—o0

Hence, f is not continuous at £ € [a, b]-

This contradicts our assumption that f is continuous on [a,b]. Therefore our supposition
that f is not bounded above is wrong. Therefore, f must be bounded above.

With similar arguments it can be shown that f must be bounded below also. Hence, if a
function is continuous on a closed interval then it is bounded.

41. If a function is continuous on a closed interval [q,b], then it attains its
bounds at least once in [g, b].

Let f be a continuous function on a closed interval [a, b].
If f is a constant function then clearly its bounds are equal to the constant value assumed by
the function. Hence the bounds are attained at every point of [a, b].

Now, suppose f is not a constant function. As f is continuous on [a, d] it is bounded. Let m
and M are the infimum and the supremum of f.

If possible suppose f does not attain its supremurm at any point of [a,b]. Therefore for every
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z € [a,b] we have f(z) < M.
Therefore,
0< M — f(x)

Define,

g(z) = M‘—lf(x)’vx € [a, b]

As f is continuous on [a, b], function g(z) is also continuous on [, b], hence bounded also.
Suppose, k is the supremum of g(z). Therefore,

g(z) < k,Vz € [a,b]

Now,

g(:z)<k=}>;<k

M — f(z)
> 2 < M- f(z)

=>f(m)<M—%

1 1
But, f(z) < M — -‘E,Vm € [a, b] implies that M — P is an upper bound of f, which is less than
its supremum. This is not possible as no upper bound can be less than the supremum.

Therefore, our supposition that f does not attain its supremum at any point of [a, b] is wrong.
Hence, there must be some o € [a, b] at which,

fle)=M

Thus, there is atleast one point in [a,b] at which f attains its supremum.

Similarly, it can be shown that f attains its infumum at atleast one point.

42. If a function f is continuous at an interior point ¢ of [a,b] and f(c) # 0,
then prove that, there exists 4 > 0 such that f(z) has the same sign as
f(c) for every z € (¢ — 6,c+ 6).

Let f be a function such that f(c) # 0 at an interior point ¢ of [a, b].
If f is continuous at ¢ then for any given € > 0 there exists some & > 0 such that

|f(z) — f(c)| < e whenever |z—c|<d
Equivalently,
fley—e< f(z) < f(c)+e whenever z€{c—6,c+d)---(1)

As f(c) # 0, either f(c) > 0 or f(c) < 0.
If f(c) > 0 then taking € such that 0 < € < f(c) we get

0< flc)—e¢
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From (1) it follows that when 0 < f(¢),
0 < f(z) whenever =z € (c—8,c+9)

Also, if f(c) < 0 then 0 < —f(c).
Taking € such that 0 < € < —f(c) we get,

fle)+e<0
From (1) it follows that when f(c) < 0,
f(z) <0 whenever z & (c—3d,c+9)

Thus, in any case there exists some § > 0 such that f(z) keeps the same sign as f(c) for every
z€(c—46,c+9)

43. If a function f is continuous on [a,b] and f(a) and f(b) are of opposite
signs, then prove that there exists at least one point o € (a,b) such that

fla)=0.

Here f is continuous on [a,b] and f{a) and f(b) are of opposite signs.
Without loss of generality, let us assume f(a) > 0 and f(b) <0
Define a set S by
S ={z/z € [a,b] and f(z) > 0}

Clearly § is bounded above by b. Also as f(a) > 0 we havea € §

Since, § is a non-empty and bounded subset of R, by order-completeness of R, the set S
has the supremum in R, say «. Clearly o € [a, }]

Now, we shall prove that & € (a,b) and f(a) =0
First we prove that o € {a,b) by showing that a # a and o # b.

Since, f(a) > 0 and f is right-continuous at a, there exists some & such that
f(z) >0, Vz € (a,a+ &)

Therefore, as o = sup.S we must have a + & < a.
Hence,

a#a

Also, f(b) < 0 and f is left-continuous at b, there exists some 4, such that
f(z) <0, Vze(b—0b)

Therefore, as o = sup.S we must have a < b — 4s.
Hence,

a#b
As a # a and « # b we must have
a € (a,b)
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Finally, we show that f(a) = 0.

If f(a) > 0 then as f is continuous at the interior point a of (a,b) there is some § > 0
such that
f(z) >0, Vze(a—_4a+d)

If we choose, some d3 such that 0 < §; < ¢ then
a—+ 03 € (a—ﬁ,a-l—c?)

Therefore,
f(O! + 53) >0

As f(a+8;) > 0 and a + & € [a, ] we have
O£+t53ES

This is not possible as & < a + 43 and « is the supremum of S so no member greater than «
can be a member of S.

Therefore, our supposition that f(a) > 0 is wrong. Hence we have

f(a) #0

If f(a) < 0 then as f is continuous at the interior point a of (a,b) there is some § > 0 such
that
flz) <0, Vze(a—da+d)

As o is the supremum of S there exists some 8 € S such that
o—d<f<a
Since, 8 € (o — 6, o + &) we must have f(8) <0

This is not possible as § € S implies that f(5) > 0.

Therefore, our supposition that f(a) < 0 is also wrong. Hence,

f(a) £ 0
As, we have f(a) # 0 and f(a) £ 0 by the Law of Trichotomy of the ordered field R, we get,

f(a)=0

44, If a function f is continuous on [e,b] and f(a) # f(b), then prove that it
assumes every value between f(a) and f(b).

If f is a constant function on [a, b] then clearly it always assumes a fixed real number which is
the infimum and supremum both. Therefore, the bounds of f are assumed by all the members
of [a, b].
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Next, suppose f is continuous on [a, b] and f(a) # f(b). Consider any A between f(a) and f(b).
Clearly f(a) — A and f(b) — A have opposite signs.
Define a function ¢(z) on [a, b] by,
¢(z) = f(z) — A, Vz € [a, ]

Here, ¢(z) is continuous on [a,b] as f(z) is continuous on |[a, b].
Also, as ¢{a) = f(a) — A and ¢(b) = f(b) — A, we have ¢(a) and @(b) of opposite signs.
Therefore, there must me some ¢ € (a, b) such that

¢(c) =0

Therefore,
f-Aa=0

Hence,
f(c)=A for some c € [a, b]

45. If a function f is continuous on [a,b] and f(a) # f(b), then prove that it
assumes every value between its bounds.

Let f be continuous on [a,b] and f(a) # f(b). As f be continuous on [a,b], it is bounded.
Suppose mn is the infimum and M is the supremum of f.

Also, f being continuous on [a, ] it attains its bounds at some points in [a,b]. Let o, 8 € [a, b]
such that

fla)=M and f(B)=m

Since, f is continuous on [a,b] it is also continuous on [a, 8] or [8, o], depending on @ < 8 or
B < a. Again, as f is continuous on [a, 8] or [8, o] as the case may be, it assumes every value

between f(a) and f(5).

Thus, f assumes every value between its bounds M and m.

[ 46. Uniform Continuity ]

Uniform Continuity:
A function f defined on an interval I is said to be uniformly continuous on I if for each € > 0
there exists a 4 > 0 such that

|f(z) — fv)| <€, Vz,y €I for which |z—y| <3,
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Remark:
The definition implies that for a given € > 0 existence of § > 0 may depend on e but must be
independent of choices of z and y

47.  Prove that if a function is uniformly continuous on an interval then it is
continuous on that interval.

Proof:
Let f(z) be a uniformly continuous function on an interval I.
Therefore, for any given € > 0 there exists some ¢ > 0 such that

|f(z) — f(y)| <€, Vz,y €I for which |z—y| <34,

Consider any ¢ € I. Now for (1), we can arbitrariily choose £ and y in I. So if we fix ¥y = ¢,
then for € > 0 there is some § > 0 such that

|f(z) — f(c)] <e,Vz €I suchthat |z—¢| <},

Therefore, f is continuous at any ¢ in I.
Hence, f is continuous on I whenever it is uniformly continuous on 1.

48. Prove that if a function is continuous on a closed interval then it is also
uniformly continuous on that interval.

Proof:

Let f(z) be a continuous function on a closed interval [a, b].

If possible, suppose f is not uniformly continuous on [a, b]. Therefore, there is some € > 0 such
that for every 0 > 0 there exist z,y € [a, b] so that

|f(z) — f)| =€, when |z—y|<§,

In particular, for each postive integer n taking 6 = %, there exist some z,, and y, in [a, b] such
that,

£ = fm) > when fon— gl < - == (1)

Now, as the sequences {z,} and {y,} of points in [a, b] are bounded by the Bolzano-Weierstrass
theorem for sequences both the sequences have limit points.

Suppose £ is a limit point of {z,} and # is a limit point of {y,}. So, corresponding to ¢
there is a subsequence {z,, } of {z,} such that

im z,, =
k—o0 Tk 6

Similarly, corresponding to 7 there is a subsequence {y,, } of {#,} such that

i v =
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Also, from (1) it follows that,

1
|-f(w"k) - f(yﬂk)l Z €, when |$ﬂk - yﬂkl < 'n_k
As, = < 1, and
g
ek =
it follows that
kllﬁlo ZTn, = lim yn,
Hence,
§=n
As |f(zn) — f(yn)| = € it follows that even if 1Lm (zn,) and le f (yn, ) both exist, we have

Jim f(zn,) # Lm f(yn,)

Thus, we have two sequences {z,, } and {y,, } converging to same limit £ but klim [ (zy,) and
— 00

klim [ (yn,) do not converge to same limits, if they exist.
—o0
But then f is not continuous at £&. This is not possible as f is contunuous on [a, b].

Due to this contradiction, we conclude that our supposition, that f is not uniformly con-
tinuous on [a, b], is wrong.

Hence, f is uniformly continuous on [a, b] whenever it is continuous on [a, b|

1
49. Prove that f(z) = % is not uniformly continuous on (0, 1].

Proof:
Clearly, f(x) is continuous on (0, 1].

1
If possible, suppose f(z) = — is uniformly continuous on (0, 1].
T

Therefore, for any given € > 0 there exists some é > 0 such that

|f(z) — f(¢)| <€ Yz,c€(0,1] for which |z—¢| <,

Therefore,

1 1

. c‘ <e¢, Yz,c€ (0,1 forwhich ze€(c—4dc+4)
Therefore,

¢

C;x‘ <€ Vr,ce(0,1] for which =z € (c—4,c+9)
Hence, by taking ¢ = § we get,

‘55;:5 <¢ V€ (0,1 for which z € (0,24)

29



Now,
0—2x

oz
By taking z sufficiently close to 0 we can make ‘5;—: as large as we want. But, in that case
condition (1) cannot be satisfied.

—xasz — 0+

Therefore, our supposition that f is uniformly continuous on (0, 1] is wrong.

Hence, f(x) = I cannot be unformly continuous on (0, 1].

[ 50. Show that f(z) = z? is uniformly continuous on [-1,1]. J

Proof:
For any zi, 3 € [-1,1] we have,
|f (21) — f(z2)| = |-’Bf — $§|
= |(z1 + 22) (21 — 22}
< |+ 1) (71 — 72)| (rz €Lz <))
=2 |.’IJ1 — .’Ezl

Thus, for any z1,z, € [-1, 1], we have,

|f(z1) — fza)| € 2|21 — 2| ---(1)
Therefore, for any given € > 0 we can take § = %, so that,
i

2
= 2|11 — x| < €

= |f(z1) — f{z2)| <e¢ From (1)

|ﬂ71—$2|<6:}’|$1—$2|<

Thercfore, we can say that for every e > 0 there exists some § > 0 such that
|f (z1) — f(z2)| < € Vz1,z2 € [-1,1], for which |z; — 22| < ¢

Hence, f is continuous on [—1, 1]

51. Show that f(z) = z? is uniformly continuous on [1,2].

Proof:
For any 1,2 € [1, 2] we have,
|f (z1) — f(z2)| = |$? - $§|
= |(z1 + 72) (%1 — x2)|
< |(2+2)($1—$2)| (931 S2,$2$2)
=4 |$1 = iEzl
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Thus, for any 1,2z, € [-1, 1], we have,
|f (z1) — f(z2)| S 4|21 — 22| ---(1)

€
Therefore, for any given € > 0 we can take § = 1 5 that,

|9:1—w2|<6=>|:1:1—:v2|<§

= 4|z — x| <€
= |f(z1) — f(z2)] <€ From (1)

Therefore, we can say that for every € > 0 there exists some é > 0 such that
|f (1) — f(22)| < € V1,22 € 1,2], for which |21 — 22| < §

Hence, f is continuous on [1, 2]

52. Derivative of a function at a point

Derivative of a function:
A real valued function f, defined on an interval I = [a, b], is said to be derivable or differentiable
at an interor point ¢ of I if the following limit exists

i 1@ = 1)

T—e T —C

The limit is called the Derivative or Differential Coefficient of f at ¢ and it is generally denoted
by f’{c). Also the process of finding the derivaive is called DIFFERENTIATION.

Remark:
Above limit in the definition can be equvalently evaluated using

o Fet ) — (9

h—0 h

53. Left Hand Derivative

Left Hand Derivative:
A real valued function f, defined on an interval I = [a, b], is said to be derivable or differentiable
from left at a point ¢ if the following limit exists

i F@) = £

z—c— o e

The limit is called the Left Hand Derivative of f at ¢ and it is generally denoted by f'(c—) or
Lf'(c).

54. Right Hand Derivative

31



Right Hand Derivative:
A real valued function f, defined on an interval I = [a, b], is said to be derivable or differentiable
from right at a point c if the following limit exists

o @)= 9

et r—=c

The limit is called the Right Hand Derivative of f at ¢ and it is generally denoted by f'(c+)
or Rf'(c).

55.  Derivability of a function on an open interval

Derivability of a function on an open interval:
A real valued function f, defined on an open interval {a,b), is said to be derivable on the
interval if it is derivable at every point ¢ € {(a, b).

In other words if the following limit li_r>n _f(a:) ‘f( ) exits at every point ¢ € (a,b) then f
is called derivale on (e, b).
[ 56. Derivability of a function on a closed interval ]

Derivability of a function on a closed interval;

A real valued function f, defined on a closed interval [a, ], is said to be derivable on the interval
if

(i) it is derivable at every point ¢ € (a, b).

(i) if it is Right derivable at a

(iii) if it is Left derivable at b

[ 57. Show that f(z) = 2? is derivable on [0,1]. J

Given function is f{z) = z?.
Derivability at any ¢ € (0,1)

f@)—flo _, z—¢

lim = lim

T T—C Te T — C
= lim (+cfz—c)

T Tr—rc
= il—%(m +c)
i @ f@) f(C) _ o
e T —
As lim flz) = fl9) exists f is derivable at every ¢ € (0.,1).

z—1 T—C
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Right derivability at 0

- 2 _
i J@—FO) _ 270
z—0+ z—0 z20+ £ — 0
= lim x
£—0+
e—=0+ x—0
— f(0
As lim f@) = 1(0) exists f is Right derivable at 0.
=30+ x—0

Left derivability at 1

g J@—FQ) _ @1
z—>1— rz—1 r—=1— 1—1
= mlimi(a: + 1)

flz) — f(1)

As Rf'(0), Lf'(1) and f'(c),Ve € (0,1) exist, f(z) = 2? is derivable on [0, 1].

il ¢ L

58. At z =1 examine the derivability of f(z) = 1
Dot ph= 1

Given function is

1 if
Now,
Iim —f(a:) sofilL) = lim s -
31— r—1 a1+ 15— 1
=]
Lf’(l) =1
Also,
lim M = lim 1-1
z—14 T — 1 z—14+ 1 — 1
= lim 0
z—1+
=0
S Rf(1)=0

Since, Lf'(1) # Rf'(1) function f is not derivable at 1.
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59. Show that the function
z? sin (l> ifz#0
f(z) = z
0 ifz=0

is derivable at z = 0 but liII(l) f'(z) # f'(0)
z—

Given function is

0 ifz=0

o 1 f@ T (B

1
im —————* =lim = lim zsin (—)
z—0 r—0 a—0 T z—0 T
1 1
zsin (—) -0 sin (—) ‘ < |z
x z

for any given € > 0 we can take § = ¢ so that,
S M
gsin{ — ) —0| <¢ whenever |z—0|<§
T

fe) = { z?sin (i) if z#0

Now,

= ||

Therefore, lim z sin (1) =i,

z—0 T
Hence,

@)= 1(0)

z—0 z—10 13

Now, for z # 0,

1 1 1 1 1
f'(z) = 2z sin — + 2° [cos — (——2)} = 2z sin — — cos —
T g\ = T T

1 1 1 1
As, z - 0—=> & = —oo and z = 0+ = o = 00, none of sin (;) and cos (5) can tend to

a fixed number.
Therefore, lig}] f'(x) does not exist.

Hence,

lim £'(z) # £(0)

60. Prove that a function which is derivable at a point is necessarily contin-
uous at that point. Is the converse true? Justify.

34



Let f be a derivable function at a point ¢. The derivative f'(¢} is given by

f’(c)=1imf(x)_f(c) ___(1)

r—c T—c

Now,

lim £(2) - £(c) = lim[f(z) — £(O)]

E—3e _ hipn f(ggzz (C) * (.’L‘—C)

— P
= f'()(0)
=0

- lim £(@) = £(0

Hence f is continuous at c.

Next we show that if a function is continuos at a point ¢ then it is not necessarily differ-
entiable at ¢. Consider the function f{z) = |z|.

Here,
f(0)=0
Now,
Jip 1) = Jip ol = imy(-2) =0
and
B, f12)= g ol = Jym =0
Since,

lim f(z) = lim f(z) = (0)

z—0+

f(z)} = |z| is continuous at z =0

Now, let us examine the derivability of f(x) at z = 0.

J@—fO) _ , lbl-0_ =

lim — = lim -1=-1
2—0— —0 z—0— T z—=0— T z—0—
Therefore,
Lf(0)=-1
Also,
him FE—FO) _ o B0 im1=1
x—0+ z—10 20+ T 20+ T 20+
Therefore,

Rf(0) =1
Since, Lf'(0) # Rf'(0) function f is not derivable at z = 0.
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Thus, the function f is continuous at 0 but it is not differentiable at 0.

Hence, the converse is not true.

r

61. If fis a derivable at c and f(c) # 0 then the function } is also derivable

at ¢ and 5 '
(7) 0= gep

Proof:
Let f be a derivable function at a point ¢. Now, the derivative f'(c) is given by

)=t i@ =D g

e T —c

As f is derivable at ¢ it is continuous also at ¢. Also if f(c) # 0 then for some neighbourhood

Nofe
flz)#0,Vz €N

Therefore for x € N,

R fe-f@)  fl@-fl 1

z—c  (z-0f(Afl@)  z—c f@)f()
TR fE) S 1
T R

RGN0
_ @
(FP

1
Hence, - is derivable at ¢ and

f

G)o- o
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