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1.2 Differential Calculus

1.2.1 “Ordinary” Derivatives

Question: Suppose we have a function of one variable: f(x). What does the derivative,
df/dx, doforus? Answer: It tells us how rapidly the function f(x) varies when we change
the argument x by a tiny amount, dx:

df = (g-i) dx. (1.33)

X

In words: If we change x by an amount dx, then f changes by an amount df'; the derivative
1s the proportionality factor. For example, in Fig. 1.17(a), the function varies slowly with
x, and the derivative is correspondingly small. In Fig. 1.17(b), f increases rapidly with x,
and the derivative is large, as you move away from x = (.

Geomerrical Interpretation: The derivative d f/dx is the slope of the graph of f versus x.

/ f

(@ (b)

Figure 1.17

1.2.2 Gradient

Suppose, now, that we have a function of three variables—say, the temperature 7' (x, y, 7)
in a room. (Start out in one corner, and set up a system of axes; then for each point (x, y, z)
in the room, 7 gives the temperature at that spot.) We want to generalize the notion of
“derivative” to functions like 7, which depend not on one but on three variables.

Now a derivative is supposed to tell us how fast the function varies, if we move a little
distance. But this time the situation is more complicated, because it depends on what
direction we move: If we go straight up, then the temperature will probably increase fairly
rapidly, but if we move horizontally, it may not change much at all. In fact, the question
“How fast does T vary?” has an infinite number of answers, one for each direction we
might choose to explore.

Fortunately, the problem is not as bad as it looks. A theorem on partial derivatives states

that
aT oT oT
JT = (_) dx + (_) dy + (%) dz. (1.34)
dx dy 0z
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This tells us how T changes when we alter all three variables by the infinitesimal amounts
dx,dy,dz. Notice that we do not require an infinite number of derivatives—three will
suffice: the partial derivatives along each of the three coordinate directions.

Equation 1.34 is reminiscent of a dot product:

oT aT aT
dT = (—i+—5’+—i)-(dxi+dy$’+dzi)
0x dy 0z
= (VT). (D), (1.35)

where
oT, 9T, 0T,
VIi=—Xx+—V+—12 (1.36)
0x dy 9z
is the gradient of T. VT is a vector quantity, with three components; it is the generalized
derivative we have been looking for. Equation 1.35 is the three-dimensional version of
Eq. 1.33.

Geometrical Interpretation of the Gradient: Like any vector, the gradient has magnitude
and direction. To determine its geometrical meaning, let’s rewrite the dot product (1.35) in
abstract form:

dT = VT .-dl = |VT||dl|cosb, (1.37)

where 6 is the angle between VT and dl. Now, if we fix the magnitude |dl| and search
around in various directions (that is, vary 6), the maximum change in T evidentally occurs
when 6 = 0 (for then cos@ = 1). That is, for a fixed distance |dl|, dT is greatest when I
move in the same direction as VT . Thus:

The gradient VT points in the direction of maximum increase of the function
T,

Moreover:

The magnitude |VT| gives the slope (rate of increase) along this maximal
direction.

Imagine you are standing on a hillside. Look all around you, and find the direction
of steepest ascent. That is the direction of the gradient. Now measure the slope in that
direction (rise over run). That is the magnifude of the gradient. (Here the function we’re
talking about is the height of the hill, and the coordinates it depends on are positions—
latitude and longitude, say. This function depends on only fwo variables, not three, but the
geometrical meaning of the gradient is easier to grasp in two dimensions.) Notice from
Eq. 1.37 that the direction of maximum descent is opposite to the direction of maximum
ascent, while at right angles (6§ = 90°) the slope is zero (the gradient is perpendicular to
the contour lines). You can conceive of surfaces that do not have these properties, but they
always have “kinks” in them and correspond to nondifferentiable functions.

What would it mean for the gradient to vanish? If VT = 0 at (x, y, z), then dT =0
for small displacements about the point (x, y, z). This is, then, a stationary point of the
function T (x, y, z). It could be a maximum (a summit), a minimum (a valley), a saddle
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point (a pass), or a “shoulder” This is analogous to the situation for functions of one
variable, where a vanishing derivative signals a maximum, a minimum, or an inflection. In
particular, if you want to locate the extrema of a function of three variables, set its gradient
equal to zero.

Example 1.3

Find the gradient of r = \/x2 + y2 + 72 (the magnitude of the position vector).

Solution;
v 3rA+8rA ar .,
= —X4+ — —1z
’ ax 8yy+8z
1 2x A-I-] 2y A_‘_l 2z .
= —_— X y - z
2 /x2_|_y2_|_22

2 x2+y2+z2 2 /x2+y2+z2
xR+ y¥+zi _r_.

/x2_|_y2_|_z2 r

Does this make sense? Well, it says that the distance from the origin increases most rapidly in
the radial direction, and that its rafe of increase in that direction is 1. .. just what you'd expect.

Problem 1.11 Find the gradients of the following functions:
@ fx,y, ) =x?+y3 424

() f(x, ¥, =x2y 24,

(c) f(x.y,2) = €' sin(y) In(2).

Problem 1.12 The height of a certain hill (in feet) is given by
h(x,y) = 10Q2xy — 3x2 — 4y? — 18x + 28y + 12),

where y is the distance (in miles) north, x the distance east of South Hadley.
(a) Where is the top of the hill located?
(b) How high is the hill?

(c) How steep is the slope (in feet per mile) at a point 1 mile north and one mile east of South
Hadley? In what direction is the slope steepest, at that point?

Problem 1.13 Let 4 be the separation vector from a fixed point (x, y’, z’) to the point (x, v, z),
and let 2 be its length. Show that

(@) V(2%) = 2.
(b) V(1/2) = -2

(¢c) What is the general formula for V (27)?
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Problem 1.14 Suppose that f is a function of two variables (v and z) only, Show that the
gradient V f = (3f/8y)y + (8f/3z)Z transforms as a vector under rotations, Eq. 1.29. [Hini:
(8f/3y) = (9f/0y)(dy/3y) + (8f/3z)(9z/9¥), and the analogous formula for df/97. We
know that y = vy cos¢ + zsing and 7 = —y sin ¢ + 7 cos ¢; “solve” these equations for y and
2 (as functions of y and %), and compute the needed derivatives dy /3y, dz/3y, etc.]

1.2.3 The Operator V

The gradient has the formal appearance of a vector, V, “multiplying” a scalar T

vT i3+”a+‘a T (1.38)
=({x— —4+z— )T .
ax Yoy T ta:

(For once 1 write the unit vectors to the left, just so no one will think this means 0X/9x, and
so on—which would be zero, since X is constant.) The term in parentheses is called “del’”:

{ .
d d
V=X—+y—

V=g i

. 0

z—. 1.39
0z ( )

Of course, del is nor a vector, in the usual sense. Indeed. it is without specific meaning until
we provide it with a function to act upon. Furthermore, it does not “multiply” T; rather, it
18 an instruction to differentiate what follows. To be precise, then, we should say that V is
a vector operator that acts upon T, not a vector that multiplies 7.

With this qualification, though, V mimics the behavior of an ordinary vector in virtually
every way; almost anything that can be done with other vectors can also be done with V, if
we merely translate “multiply” by “act upon.” So by all means take the vector appearance
of V seriously: it is a marvelous piece of notational simplification, as you will appreciate if
you ever consult Maxwell’s original work on electromagnetism, written without the benefit
of V.

Now an ordinary vector A can multiply in three ways:

I. Multiply a scalar a : Aa;
2. Multiply another vector B, via the dot product: A - B;

3. Multiply another vector via the cross product: A x B.
Correspondingly, there are three ways the operator V can act:

I. On a scalar function T : VT (the gradient);
2. On a vector function v, via the dot product: V - v (the divergence);
3. On a vector function v, via the cross product: V x v (the curl).

We have already discussed the gradient. In the following sections we examine the other
two vector derivatives: divergence and curl.
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1.2.4 The Divergence

From the definition of V we construct the divergence:

.0 8 0 . . A
Vv = (xa-l-y@—{—za—z)-(vxx—{—vyy—l—vzz)

dvy dvy  dv,
ox T ay T

17

(1.40)

Observe that the divergence of a vector function v is itself a scalar V - v. (You can’t have

the divergence of a scalar: that’s meaningless.)

Geometrical Interpretation:  The name divergence is well chosen, for Vv is ameasure
of how much the vector v spreads out (diverges) from the point in question. For example,
the vector function in Fig. 1.18a has a large (positive) divergence (if the arrows pointed in,
it would be a large negative divergence), the function in Fig. 1.18b has zero divergence, and
the function in Fig. 1.18c again has a positive divergence. (Please understand that v here is
a function—there’s a different vector associated with every point in space. In the diagrams,

NP4

S
VI

(@) (b)

(©

Figure 1.18
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of course, I can only draw the arrows at a few representative locations.) Imagine standing
at the edge of a pond. Sprinkle some sawdust or pine needles on the surface. If the material
spreads out, then you dropped it at a point of positive divergence; if it collects together,
you dropped it at a point of negative divergence. (The vector function v in this model is the
velocity of the water—this is a rwo-dimensional example, but it helps give one a “feel” for
what the divergence means. A point of positive divergence is a source, or “faucet™; a point
of negative divergence is a sink, or “drain.”)

Example 1.4

Suppose the functions in Fig. 1.18 are vy = r = xX+ y§y + 2%, vp = Z, and v, = ¢ Z
Calculate their divergences.

Solution:

d a 9
Vovg=—@+_—-—WM+—@=1+1+1=3
ax ay 9z

As anticipated, this function has a positive divergence.
a3 a b
Viovp=—0+ -0+ —=—(1)=04+04+0=0,
dax ay az

as expected.

d a d
Vve=—O)+—O)+ —(2)=0+0+1=1.
ax ay 9z

Problem 1.15 Calculate the divergence of the following vector functions:
(a) vy = x2% 4+ 3x72 v —2xz1.

O)v, =xyx+2yzy + 3zxZ

(©) Ve = 2 &+ (2xy + 22) § + 2yz i

Problem 1.16 Sketch the vector function

and compute its divergence. The answer may surprise you. . .can you explain it?

Problem 1.17 In two dimensions, show that the divergence transforms as a scalar under rota-
tions. [Hint: Use Eq. 1.29 to determine vy and U, and the method of Prob. 1.14 to calculate
the derivatives. Your aim is to show that dvy /9y + 07V, /9z = dvy/dy + dv;/0z.]
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1.2.5 The Curl

From the definition of V we construct the curl:

X y z
Vxv = 0/0x d/0y 9d/0z
Vx vy v,

. (dv,  Ovy . {0V 0v; . (Ovy  Juy
= (- ) (G- (- T) o
Notice that the curl of a vector function v is, like any cross product, a vector. (You cannot
have the curl of a scalar; that’s meaningless.)

Geometrical Interpretation: The name curl is also well chosen, for V x v is a measure
of how much the vector v “curls around” the point in question. Thus the three functions in
Fig. 1.18 all have zero curl (as you can easily check for yourself), whereas the functions
in Fig. 1.19 have a substantial curl, pointing in the z-direction, as the natural right-hand
rule would suggest. Imagine (again) you are standing at the edge of a pond. Float a small
paddiewheel (a cork with toothpicks pointing out radially would do); if it starts to rotate,
then you placed it at a point of nonzero curl. A whirlpool would be a region of large curl.

Z
Z
‘/‘/ : \\\ -— - — ) - = - - - -
’;‘ ¢ f / / — — 7/-— — — — — — y
> - -
g (a) L (b)
X
Figure 1.19
Example 1.5
Suppose the function sketched in Fig, 1.19a is v, = —yX + x¥y, and that in Fig. 1.19b is
v, = x§. Calculate their curls.
Selution:
X y z
Vxv,=| d/0x adjdy d/9z | =2i,
—y x 0
and
X ¥ Z
Vxv,=| d/dx d/dy 3/dz |=1
0 X 0
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Asexpected, these curls pointin the 4z direction. (Incidentally, they both have zero divergence,
as you might guess from the pictures: nothing is “spreading out”. .. it just “curls around.”)

Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.19 Construct a vector function that has zero divergence and zero curl everywhere..
(A constant will do the job, of course, but make it something a little more interesting than
that!)

1.2.6 Product Rules

The calculation of ordinary derivatives is facilitated by a number of general rules, such as
the sum rule:

d df dg
xS TO = T
the rule for multiplying by a constant:
d df
k) = k=L
dx( 1) I
the product rule:
dg df
d_(f )= fdx +gdx’
and the quotient rule:
df  .dg
4 (fy_Sax Tax
dx \ g g’

Similar relations hold for the vector derivatives. Thus,
Vif+g=Vf+Vg, V- A+B)=(V-A)+(V:B),
Vx(A+B) =(VxA+(VxB),

and
Vikf)=kV, V - (kA) = k(V - A), V x (kA) = k(V x A),

as you can check for yourself. The product rules are not quite so simple. There are two
ways to construct a scalar as the product of two functions:

fg  (product of two scalar functions),
A -B (dot product of two vector functions),

and two ways to make a vector:

JSA  (scalar times vector),
A x B (cross product of two vectors).




Chapter 2

Electrostatics

2.1 The Electric Field

2.1.1 Introduction

The fundamental problem electromagnetic theory hopes to solve is this (Fig. 2.1): We have
some electric charges, g1, g2, g3, - . . (call them source charges); what force do they exert
on another charge, Q (call it the test charge)? The positions of the source charges are given
(as functions of time); the trajectory of the test particle 1s to be calculated. In general, both
the source charges and the test charge are in motion.

The solution to this problem is facilitated by the principle of superposition, which states
that the interaction between any two charges is completely unaffected by the presence of
others. This means that to determine the force on @, we can first compute the force Fy, due
to g| alone (ignoring all the others); then we compute the force Fa, due to g2 alone; and so
on. Finally, we take thé& vector sum of all these individual forces: F = F; + F> + F3 4. ..
Thus, if we can find the force on Q due to a single source charge g, we are, In principle,
done (the rest is just a question of repeating the same operation over and over, and adding
it all up).!

Well, at first sight this sounds very easy: Why don’t I just write down the formula for
the force on Q due to ¢, and be done with it? I could, and in Chapter 10 I shall, but you
would be shocked to see it at this stage, for not only does the force on O depend on the
separation distance 2 between the charges (Fig. 2.2), it also depends on both their velocities
and on the acceleration of q. Moreover, it is not the position, velocity, and acceleration
of g right now that matter; Electromagnetic “news” travels at the speed of light, so what
concerns ( is the position, velocity, and acceleration g had at some earlier time, when the
message left.

"The principle of superposition may seem “obvions” to you, but it did not ~ave to be so simple: if the electromag-
netic force were proportional to the square of the total source charge, for instance, the principle of superposition
would not hold, since (g7 + ) # ql2 + q% (there would be “cross terms” to consider). Superposition is not a
logical necessity, but an experimental fact.

58
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. 0
q,*
a@* * . R
. *q; 2
L ]
"Source" charges "Test" charge q
Figure 2.1 Figure 2.2

Therefore, in spite of the fact that the basic question (“What is the force on @ due to
g?’) is easy to state, it does not pay to confront it head on; rather, we shall go at it by
stages. In the meantime, the theory we develop will permit the solution of more subtle
electromagnetic problems that do not present themselves in quite this simple format. To
begin with, we shall consider the special case of electrostatics in which all the source
charges are stationary (though the test charge may be moving).

2.1.2 Coulomb’s Law

What is the force on a test charge Q due to a single point charge g which is at rest a distance
2 away? The answer (based on experiments) is given by Coulomb’s law:

1 -
F = Qa

= ) 2.1
4reg 22 @D

The constant ¢q is called the permitivity of free space. In SI units, where force is in
Newtons (N), distance in meters (m), and charge in coulombs (C),

2
€0 = 8.85 x 025
N - m?2
In words, the force is proportional to the product of the charges and inversely proportional
to the square of the separation distance. As always (Sect. 1.1.4), 4 is the separation vector
from r’ (the location of ¢) to r (the location of Q):

A=r—1]; (2.2)

2 is its magnitude, and 2 is its direction. The force points along the line from g to Q; it is
repulsive if ¢ and Q have the same sign, and attractive if their signs are opposite.

Coulomb’s law and the principle of superposition constitute the physical input for
electrostatics—the rest, except for some special properties of matter, is mathematical elab-
oration of these fundamental rules.
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Problem 2.1

(a) Twelve equal charges, g, are situated at the corners of a regular 12-sided polygon (for
instance, one on each numeral of a clock face). What is the net force on a test charge Q at the
center?

(b) Suppose one of the 12 ¢’s is removed (the one at “6 o’clock™). What is the force on Q?
Explain your reasoning carefully.

(c) Now 13 equal charges, g, are placed at the corners of a regular 13-sided polygon. What is
the force on a test charge Q at the center?

(d) If one of the 13 g’s is removed, what is the force on Q7 Explain your reasoning.

2.1.3 The Electric Field

If we have several point charges g1, g2, - . ., qn, at distances 21, 22, . .., 2, from Q, the total
force on Q is evidently

1 . .
F = F +F4.. . = 412Qal+‘122Qaz+.‘.
4meg \ 29 25
%1 ) %3
_ () (412 4_6122 4_6132 +)
4meg 2] 25 23
or
F = QF, 2.3)
where
1 &g
Er) = i, 2.4
(r) 47160;@% ; (2.4)

E is called the electric field of the source charges. Notice that it is a function of position (r),
because the separation vectors 4; depend on the location of the field point P (Fig. 2.3). But
it makes no reference to the test charge Q. The electric field is a vector quantity that varies

Source point

P
)
To of % Field
q2¢°, point
T
X

Figure 2.3
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from point to point and is determined by the configuration of source charges; physically,
E(r) is the force per unit charge that would be exerted on a test charge, if you were to place
one at P.

What exactly is an electric field? I have deliberately begun with what you might call
the “minimal” interpretation of E, as an intermediate step in the calculation of electric
forces. But I encourage you to think of the field as a “real” physical entity, filling the
space in the neighborhood of any electric charge. Maxwell himself came to believe that
electric and magnetic fields represented actual stresses and strains in an invisible primordial
jellylike “ether.” Special relativity has forced us to abandon the notion of ether, and with it
Maxwell’s mechanical interpretation of electromagnetic fields. (It is even possible, though
cumbersome, to formulate classical electrodynamics as an “action-at-a-distance’ theory,
and dispense with the field concept altogether.) I can’t tell you, then, what a field is—only
how to calculate it and what it can do for you once you’ve got it.

Problem 2.2

(a) Find the electric field (magnitude and direction) a distance z above the midpoint between
two equal charges, g, a distance d apart (Fig, 2.4). Check that your result is consistent with
what you’d expect when z > d.

(b) Repeat part (a), only this time make the right-hand charge —¢ instead of +4.

dl’
P (a) Continuous (b) Line charge, A
distribution
z da’ 4 _~*P 2P
oy
q d2 | d2 g (¢) Surface charge, & (d) Volume charge, p
Figure 2.4 Figure 2.5

2.14 Continuous Charge Distributions

Our definition of the electric field (Eq. 2.4), assumes that the source of the field is a collection
of discrete point charges ¢;. If, instead, the charge is distributed continuously over some
region, the sum becomes an integral (Fig. 2.5a):

1 1.
E(r) = —f—zadq. 2.5)
4 e 2
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If the charge is spread out along a line (Fig. 2.5b), with charge-per-unit-length %, then
dq = Adl’ (where dl’ is an element of length along the line); if the charge is smeared
out over a surface (Fig. 2.5¢), with charge-per-unit-area ¢, then dg = o da’ (where da’
is an element of area on the surface); and if the charge fills a volume (Fig. 2.5d), with
charge-per-unit-volume p, then dg = p dt’ (where dt’ is an element of volume):

dg — \dl' ~oda ~ pdt’.

Thus the electric field of a line charge is

1 A(r'y
Er) = —— [ 255 2.6)
4meq 22
P
for a surface charge,
I r).
E(r) = /‘7( )4da’; 2.7
4reg 22
S
and for a volume charge,
1 V.
Er = —— [ 28540 (2.8)
dmreg 2
A%

Equation 2.8 itself is often referred to as “Coulomb’s law,” because it is such a short
step from the original (2.1), and because a volume charge is in a sense the most general
and realistic case. Please note carefully the meaning of 4 in these formulas. Originally, in
Eq. 2.4, %; stood for the vector from the source charge g; to the field pointr. Correspondingly,
in Egs. 2.5-2.8, 4 is the vector from dg (therefore from dl’, da’, or dt’) to the field point

r?

Example 2.1
Find the electric field a distance z above the midpoint of a straight line segment of length 2L,
which carries a uniform line charge A (Fig. 2.6).

Solution: It is advantageous to chop the line up into symmetrically placed pairs (at x), for
then the horizontal components of the two fields cancel, and the net field of the pair is

1 rd
dE =2 il cos 0 z.
4meq \ 22

2 Warn ing: The unit vector 4 is not constant; its direction depends on the source point r’, and hence it cannot be
taken outside the integrals 2.5-2.8. In practice, you must work with Carfesian components (X, ¥, Z are constant,
and do come out), even if you use curvilinear coordinates to perform the integration.
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\/

2
dx
-L — +L «x
Figure 2.6

Here cosf = z/2,2 = v/ 22 4+ x2, and x runs from 0 to L:

1 L 2X
F = / < dx
amey Jo (22 4 x2)3/2
L

2Mz X
4JTE() ZZ /ZZ + xZ
1 2AL

dmey /2 4 12

0

and it aims in the z-direction.

For points far from the line (z >> L), this result simplifies:

1 2iL
 4meg 72

which makes sense: From far away the line “looks’ like a point charge g = 21 L, so the field
reduces to that of point charge ¢/ (4negz2). In the limit L — 00, on the other hand, we obtain
the field of an infinite straight wire:

I 2x
E= —:
4mey z
or, more generally,
1 2x
- 43160 ?,

(2.9)

where s is the distance from the wire.

Problem 2.3 Find the electric field a distance z above one end of a straight line segment of
length L (Fig. 2.7), which carries auniform line charge A. Check that your formula is consistent
with what you would expect for the case z 3> L.
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Figure 2.7 Figure 2.8 Figure 2.9

Problem 2.4 Find the electric field a distance z above the center of a square loop (side a)
carrying uniform line charge A (Fig. 2.8). [Hint: Use the result of Ex. 2.1.]

Problem 2.5 Find the electric field a distance z above the center of a circular loop of radius r
(Fig. 2.9), which carries a uniform line charge A.

Problem 2.6 Find the electric field a distance z above the center of a flat circular disk of radius
R (Fig. 2.10), which carries a uniform surface charge o. What does your formula give in the
limit R — oo? Also check the case 7 > R.

Problem 2.7 Find the electric field a distance z from the center of a spherical surface of radius
R (Fig. 2.11), which carries a uniform charge density o. Treat the case z < R (inside) as well
as z > R (outside). Express your answers in terms of the total charge ¢ on the sphere. [Hint:
Use the law of cosines to write 2 in terms of R and 6. Be sure to take the posirive square root:

VR24+72-2Rz=(R—-2)ifR > z,butit’s (z — R) if R < z.]

Problem 2.8 Use your result in Prob. 2.7 to find the field inside and outside a sphere of radius
R, which carries a uniform volume charge density p. Express your answers in terms of the
total charge of the sphere, ¢g. Draw a graph of |E| as a function of the distance from the center.

Figure2.10 Figure 2.11
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2.2 Divergence and Curl of Electrostatic Fields

2.2.1 Field Lines, Flux, and Gauss’s Law

In principle, we are done with the subject of electrostatics. Equation 2.8 tells us how to
compute the field of a charge distribution, and Eq. 2.3 tells us what the force on a charge Q
placed in this field will be. Unfortunately, as you may have discovered in working Prob. 2.7,
the integrals involved in computing E can be formidable, even for reasonably simple charge
distributions. Much of the rest of electrostatics is devoted to assembling a bag of tools and
tricks for avoiding these integrals. It all begins with the divergence and curl of E. I shall
calculate the divergence of E directly from Eq. 2.8, in Sect. 2.2.2, but first I want to show
you a more qualitative, and perhaps more illuminating, intvitive approach.
Let’s begin with the simplest possible case: a single point charge g, situated at the
origin:
1 g
dmeq r?

Em = r. (2.10)
To get a “feel” for this field, I might sketch a few representative vectors, as in Fig. 2.12a.
Because the field falls off like 1/r2, the vectors get shorter as you go farther away from the
origin; they always point radially outward. But there is a nicer way to represent this field,
and that’s to connect up the arrows, to form field lines (Fig. 2.12b). You might think that I
have thereby thrown away information about the strength of the field, which was contained
in the length of the arrows. But actually I have not. The magnitude of the field is indicated
by the density of the field lines: it’s strong near the center where the field lines are close
together, and weak farther out, where they are relatively far apart.

In truth, the field-line diagram is deceptive, when I draw it on a two-dimensional surface,
for the density of lines passing through a cjrcle of radius r 1s the total number divided by the
circumference (n/27r), which goes like (1/r), not (1/r2). But if you imagine the model in
three dimensions (a pincushion with needles sticking out in all directions), then the density
of lines is the total number divided by the area of the sphere (n/47r?), which does go like

(1/r%).

Figure 2.12
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Equal but opposite charges

Figure 2.13

Such diagrams are also convenient for representing more complicated fields. Of course,
the number of lines you draw depends on how energetic you are (and how sharp your pencil
is), though you ought to inciude enough to get an accurate sense of the field, and you must
be consistent: If charge g gets 8 lines, then 2g deserves 16. And you must space them
fairly—they emanate from a point charge symmetrically in all directions. Field lines begin
on positive charges and end on negative ones; they cannot simply terminate in midair, though
they may extend out to infinity. Moreover, field lines can never cross—at the intersection,
the field would have two different ditections at once! With all this in mind, it is easy to
sketch the field of any simple configuration of point charges: Begin by drawing the lines
in the neighborhood of each charge, and then connect them up or extend them to infinity
(Figs. 2.13 and 2.14).

Equal charges

Figure 2.14
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Figure 2.15

In this model the flux of E through a surface S,
br Ef E.da, 211
S

is a measure of the “number of field lines” passing through . 1 put this in quotes because of
course we can only draw a representative sample of the field lines—the fotal number would
be infinite. But for a given sampling rate the flux is proportional to the number of lines
drawn, because the field strength, remember, is proportional to the density of field lines
(the number per unit area), and hence E - da is proportional to the number of lines passing
through the infinitesimal area da. (The dot product picks out the component of da along
the direction of E, as indicated in Fig. 2.15. It is only the area in the plane perpendicular
to E that we have in mind when we say that the density of field lines is the number per unit
area.)

This suggests that the flux through any closed surface is a measure of the total charge
inside. For the field lines that originate on a positive charge must either pass out through
the surface or else terminate on a negative charge inside (Fig. 2.16a). On the other hand, a
charge outside the surface will contribute nothing to the total flux, since its field lines pass
in one side and out the other (Fig. 2.16b). This is the essence of Gauss’s law. Now let’s
make it quantitative.

(b)

Figure 2.16
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In the case of a point charge g at the origin, the flux of E through a sphere of radius r is

%E-da:] : (if') (r’sinfdodeF) = -l—q. (2.12)
dmey \r2 €0

Notice that the radius of the sphere cancels out, for while the surface area goes up as 2, the
field goes down as 1/r?, and so the product is constant. In terms of the field-line picture, this
makes good sense, since the same number of field lines passes through any sphere centered
at the origin, regardless of its size. In fact, it didn’t have to be a sphere—any closed surface,
whatever its shape, would trap the same number of field lines. Evidently the flux through
any surface enclosing the charge is g /€q.

Now suppose that instead of a single charge at the origin, we have a bunch of charges
scattered about. According to the principle of superposition, the total field is the (vector)
sum of all the individual fields: .

E=) E.
i=1

The flux through a surface that encloses them all, then, is

%E-dazé(%ﬂ-da)zg(%qi)‘

For any closed surface, then,

1

\%E +da = — Qenc, (2.13)
€0

S

where Qenc is the total charge enclosed within the surface. This is the quantitative state-
ment of Gauss’s law. Although it contains no information that was not already present in
Coulomb’s law and the principle of superposition, it is of almost magical power, as you will
see in Sect. 2.2.3. Notice that it all hinges on the 1 /72 character of Coulomb’s law; without
that the crucial cancellation of the r’s in Eq. 2.12 would not take place, and the total flux
of E would depend on the surface chosen, not merely on the total charge enclosed. Other
1/r? forces (I am thinking particularly of Newton’s law of universal gravitation) will obey
“Gauss’s laws” of their own, and the applications we develop here carry over directly.

As it stands, Gauss’s law is an integral equation, but we can readily turn it into a
differential one, by applying the divergence theorem:

%E-da:f(V-E)dr.
A%

S

Rewriting Qcpne in terms of the charge density p, we have

Qenc zfpdf.

Vv
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fowar=[(2)o

\% 1%

And since this holds for any volume, the integrands must be equal:

So Gauss’s law becomes

V.E=1p. (2.14)
€0

Equation 2.14 carries the same message as Eq. 2.13; it is Gauss’s law in differential
form. The differential version is tidier, but the integral form has the advantage in that it
accommodates point, line, and surface charges more naturally.

Problem 2.9 Suppose the electric field in some region is found to be E = kr3t, in spherical
coordinates (k is some constant),

(a) Find the charge density p.

(b) Find the total charge contained in a sphere of radius R, centered at the origin. (Do it two
different ways.)

Problem 2.10 A charge ¢ sits at the back corner of a cube, as shown in Fig. 2.17. What is the
flux of E through the shaded side?

Figure 2.17

2.2.2 The Divergence of E

Let’s go back, now, and calculate the divergence of E directly from Eq. 2.8:

~

E(r)=4—1— f 2 p(ydr 2.15)
TEp A

all space

(Originally the integration was over the volume occupied by the charge, but I may as
well extend it to all space, since p = 0 in the exterior region anyway.) Noting that the
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r-dependence is contained in2 = r — r/, we have

1 z
V- E= \0 Ydt'
4neof (az) plr)de

This is precisely the divergence we calculated in Eq. 1.100:

V. (%) = 478 ().

f4n53(r —rHphdt = ép(r), (2.16)

Thus

V-E=
4mep

which is Gauss’s law in differential form (2.14). To recover the integral form (2.13}), we
run the previous argument in reverse—integrate over a volume and apply the divergence

theorem: [ I
fV‘EdrzﬁE’da:"_/pdr:_Qenc-
€0 €
V

Vv S

2.2.3 Applications of Gauss’s Law

I must interrupt the theoretical development at this point to show you the extraordinary
power of Gauss’s law, in integral form. When symmetry permits, it affords by far the
quickest and easiest way of computing electric fields. I'll illustrate the method with a series
of examples.

Example 2.2
Find the field outside a uniformly charged solid sphere of radius R and total charge g.
Solution: Draw a spherical surface at radius » > R (Fig. 2.18); this is called a “Gaussian

surface” in the trade. Gauss’s law says that for this surface (as for any other)

1
%E'da = — Qenc.
€
S

and Qene = ¢- At first glance this doesn’t seem to get us very far, because the quantity we
want (E) is buried inside the surface integral. Luckily, symmetry allows us to extract E from
under the integral sign: E certainly points radially outward,® as does da, so we can drop the

dot product,
/E-da:fiE|da,

S S

31F you doubt that E is radial, consider the alternative. Suppose, say, that it points due east, at the “equator.” But
the orientation of the equator is perfectly arbitrary—nothing is spinning here, so there is no natural “north-south”
axis—any argument purporting to show that E points east could just as well be used to show it points west, or
north, or any other direction. The only unique direction on a sphere is radial.
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Gaussian -
surface

Figure 2.18

and the magnitude of E is constant over the Gaussian surface, so it comes outside the integral:

ffE|da= |E|/ da = |E| 47r.
S S

Thus
2 1
|Eldrr® = —q,
€0
or
1 g,
E= —Tr.
deg rl

Notice a remarkable feature of this result: The field outside the sphere is exactly the same as
it would have been if all the charge had been concentrated at the center.

Gauss’s law is always frue, but it is not always useful. If p had not been uniform (or, at
any rate, not spherically symmetrical), or if I had chosen some other shape for my Gaussian
surface, it would still have been true that the flux of E is (1/¢g)g, but I would not have
been certain that E was in the same direction as da and constant in magnitude over the
surface, and without thdt I could not pull |E| out of the integral. Symmetry is crucial to this
application of Gauss’s law. As far as I know, there are only three kinds of symmetry that
work:

1. Spherical symmetry. Make your Gaussian surface a concentric sphere.

2. Cylindrical symmetry. Make your Gaussian surface a coaxial cylinder
(Fig. 2.19).

3. Plane symmetry. Use a Gaussian “pillbox,” which straddles the surface
(Fig. 2.20).

Although (2) and (3) technically require infinitely long cylinders, and planes extending to
infinity in all directions, we shall often use them to get approximate answers for “long”
cylinders or “large” plane surfaces, at points far from the edges.
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Gaussian
pillbox

Gaussian surface

Figure 2.19 Figure 2.20

Example 2.3

A long cylinder (Fig. 2.21) carries a charge density that is proportional to the distance from
the axis: p = ks. for some constant k. Find the electric field inside this cylinder.

Solution: Draw a Gaussian cylinder of length / and radius s. For this surface, Gauss’s law
states:

1
%E'da = — Oenc-
€0
S

The enclosed charge is
N
Ocnc = | pdr = | (ks)(s' ds’ dp dz) =2nkl | s?%ds’ = 2rkis.
0 3

(I used the volume element appropriate to cylindrical coordinates, Eq. 1.78, and integrated ¢
from 0 to 27, dz from 0 to /. I put a prime on the integration variable s, to distinguish it from
the radius s of the Gaussian surface.)

P

Gaussian
E surface

Figure 2,21
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Now, symmetry dictates that E must point radially outward, so for the curved portion of the
Gaussian cylinder we have:

/E-da=/|E|da:|E|[da=|E|27rsl,

while the two ends contribute nothing (here E is perpendicular to da). Thus,

2
B 28] = - Zakisd,
€0 3

or, finally,

Example 2.4

An infinite plane carries a uniform surface charge o. Find its electric field.

Solution: Draw a “Gaussian pillbox,” extending equal distances above and below the plane
(Fig. 2.22). Apply Gauss’s law to this surface:

1
%E'da: — Uenc.
€0

In this case, Qene = 0 A, where A is the area of the lid of the pillbox. By symmetry, E points
away from the plane (upward for points above, downward for points below). Thus, the top and
bottom surfaces yield

/E .da = 2A|E|,

Figure 2.22
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whereas the sides contribute nothing. Thus

1
2AE| = —0c A,
€0
or o
E=—n 2.17)
2eq

where i is a unit vector pointing away from the surface. In Prob. 2.6, you obtained this same
result by a much more laborious method.

It seems surprising, at first, thaf the field of an infinite plane is independent of how far away
you are. What about the 1/ r in Coulomb’s law? Well, the point is that as you move farther
and farther away from the plane, more and more charge comes into your “field of view” (a
cone shape extending out from your eye), and this compensates for the diminishing influence
of any particular piece. The electric field of a sphere falls off like 1/ #2; the electric field of an
infinite line falls off like 1/r; and the electric field of an infinite plane does not fall off at all.

Although the direct use of Gauss’s law to compute electric fields is limited to cases of

spherical, cylindrical, and planar symmetry, we can put together combinations of objects
possessing such symmetry, even though the arrangement as a whole is not symmetrical.
For example, invoking the principle of superposition, we could find the field in the vicinity
of two uniformly charged parallel ¢ylinders, or a sphere near an infinite charged plane.

Example 2.5

Two infinite parallel planes carry equal but opposite uniform charge densities +o (Fig. 2.23).
Find the field in each of the three regions: (i) to the left of both, (ii) between them, (iil) to the
right of both.

Solution: The left plate produces a field (1/2¢g}o which points away from it (Fig. 2.24)—to
the left in region (i} and to the right in regions (i1} and (iii). The right plate, being negatively
charged, produces a field (1/2¢3)g, which points foward it—to the right in regions (i) and
(ii) and to the left in region (jii). The two fields cancel in regions (i) and (iii); they conspire
in region (ii). Conclusion: The field is (1/€g)o, and points to the right, between the planes;
elsewhere it is zero.

(i) (i) (iii)

+C +G -G

Figure 2.23 Figure 2.24
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Problem 2.11 Use Gauss’s law to find the electric field inside and outside a spherical shell of
radius R, which carries a uniform surface charge density . Compare your answer to Prob. 2.7.

Problem 2.12 Use Gauss’s law to find the electric field inside a uniformly charged sphere
(charge density o). Compare your answer to Prob. 2.8.

Problem 2.13 Find the electric field a distance s from an infinitely long straight wire, which
carries a uniform line charge 4. Compare Eq. 2.9,

Problem 2.14 Find the electric field inside a sphere which carries a charge density proportional
to the distance from the origin, p = kr, for some constant k. [Hint: This charge density is not
uniform, and you must integrate to get the enclosed charge.]

Problem 2.15 A hollow spherical shell carries charge density

P = r_2
in the region @ < » < b (Fig. 2.25). Find the electric field in the three regions: (i) r < a, (ii)

a <r < b, (iii) r > b. Plot |[E} as a function of r.

Problem 2.16 A long coaxial cable (Fig. 2.26) carries a uniform volume charge density p on
the inner cylinder (radius a), and a uniform surface charge density on the outer cylindrical
shell (radius b). This surface charge is negative and of just the right magnitude so that the
cable as a whole is electrically neutral. Find the electric ficld in each of the three regions: (i)
inside the inner cylinder (s < @), (ii) between the cylinders (@ < s < b), (iii) outside the cable
(s > b). Plot {E| as a function of s.

Problem 2.17 An infinite plane slab, of thickness 2d, carries a uniform volume charge density
o (Fig. 2.27). Find the electric field, as a function of y, where v = 0 at the center. Plot E
versus y, calling E positive when it points in the +y direction and negative when it points in
the —y direction.

Problem 2.18 Two spheres, each of radius R and carrying uniform charge densities +p and
— p, respectively, are placed so that they partially overlap (Fig. 2.28). Call the vector from the
positive center to the negative center d. Show that the field in the region of overlap is constant,
and find its value. [Hint: Use the answer to Prob. 2.12.]

Figure 2.25 Figure 2.26
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Figure 2.27 Figure 2.28

2.24 The Curl of E

I'll calculate the curl of E, as I did the divergence in Sect. 2.2.1, by studying first the simplest
possible configuration: a point charge at the origin. In this case

|
—T

E = .
4reg r?

Now, a glance at Fig. 2.12 should convince you that the curl of this field has to be zero, but
I suppose we ought to come up with something a little more rigorous than that. What if we
calculate the line integral of this field from some point a to some other point b (Fig. 2.29):

b
/ E - dl
a

In spherical coordinates, dl = dr £ +r d6 0 + r sin6 d¢ ¢, so

idr.
4eq 12

b 1 b -1 rp 1
f E.dl= f Lar = 1) (i_i), (2.18)
a drweg Jgq T dwegr|, ~ Amey \ra Tp
where r, is the distance from the origin to the point a and r}, is the distance to b. The
integral around a closed path is evidently zero (for then r; = rp):

E.dl=

Therefore,

%E-dl:O, (2.19)
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Figure 2.29

and hence, applying Stokes’ theorem,

B

Now, I proved Egs. 2.19 and 2.20 only for the field of a single point charge at the origin,
but these results make no reference to what is, after all, a perfectly arbitrary choice of
coordinates; they also hold no matter where the charge is located. Moreover, if we have
many charges, the principle of superposition states that the total field is a vector sum of
their individual fields:

E=E, +E+ ...,

SO
VXE=VX(E +E +..)=(VXE)+(VxE)+...=0.

Thus, Egs. 2.19 and 2.20 hold for any static charge distribution whatever.

Problem 2.19 Calculate V x E directly from Eq. 2.8, by the method of Sect. 2.2.2. Refer to
Prob. 1.62 if you get stuck.

2.3 Electric Potential

2.3.1 Introduction to Potential

The electric field E is not just any old vector function; it is a very special kind of vector
function, one whose curl is always zero. E = yX, for example, could not possibly be
an electrostatic field; no set of charges, regardless of their sizes and positions, could ever
produce such a field. In this section we’re going to exploit this special property of electric
fields to reduce a vector problem (finding E) down to a much simpier scalar problem. The
first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero is equal to the gradient
of some scalar. What I’m going to do now amounts to a proof of that claim, in the context
of electrostatics.
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(i) b

(i)

Figure 2.30

Because V x E = 0, the line integral of E around any closed loop is zero (that follows
from Stokes’ theorem). Because § E - d1 = 0, the line integral of E from point a to point
b is the same for all paths (otherwise you could go out along path (i) and return along path
(i))—Fig. 2.30—and obtain § E - dl # 0). Because the line integral is independent of path,
we can define a function*

Vi(r)= —f E . dL (2.21)
0]

Here O is some standard reference point on which we have agreed beforehand; V then
depends only on the point r. It is called the electric potential.
Evidently, the potential difference between two points a and b is

b a
V(b)—V(a) = —/ E-dl+/E-a’l
O o

b o b
= —/ E-dl—f E.dlz—/ E-dl (2.22)
O a a

Now, the fundamental theorem for gradients states that

b
V(b) — V(a) = / (VV) - dl,

b b
/ (VV)-dl:—f E-dl

Since, finally, this is true for any points a and b, the integrands must be equal:

50

E=-VV. (2.23)

Equation 2.23 is the differential version of Eq. 2.21; it says that the electric field is the
gradient of a scalar potential, which is what we set out to prove.

“To avoid any possible ambiguity I should perhaps put a prime on the integration variable:
r
Viry = — f E(r'y - 4.
Q

But this makes for cumbersome notation, and 1 prefer whenever possible to reserve the primes for source points.
However, when (as in Ex. 2.6) we calculate such integrals explicitly, T shall put in the primes.
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Notice the subtle but crucial role played by path independence (or, equivalently, the fact
that V x E = 0) in this argument. If the line integral of E depended on the path taken, then
the “definition” of V, Eq. 2.21, would be npnsense. It simply would not define a function,
since changing the path would alter the value of V(r). By the way, don’t let the minus sign
in Eq. 2.23 distract you; it carries over from 2.21 and is largely a matter of convention.

Problem 2.20 One of these is an impossible electrostatic field. Which one?
(@QE =k[xyX+2vz¥+3x22);
(b)E = k[y2 R+ Qxy + 29§ +2yz1l.

Here k is a constant with the appropriate units. For the possibie one, find the potential, using
the origin as your reference point. Check your answer by computing VV. [Hins: You must
select a specific path to integrate along. It doesn’t matter what path you choose, since the
answer is path-independent, but you simply cannot integrate unless you have a particular path
in mind.]

2.3.2 Comments on Potential

(i) The name. 'The word “potential” is a hideous misnomer because it inevitably
reminds you of potential energy. This is particularly confusing, because there is a connection
between “potential” and “potential energy,” as you will see in Sect. 2.4. I'm sorry that it
1s impossible to escape this word. The best I can do is to insist once and for all that
“potential” and “potential energy” are completely different terms and should, by all rights,
have different names. Incidentally, a surface over which the potential is constant is called
an equipotential.

(ii) Advantage of the potential formulation. If you know V, you can easily get
E—just take the gradient: E = —V V. This is quite extraordinary when you stop to think
about it, for E is a vector quantity (three components), but V is a scalar (one component).
How can one function possibly contain all the information that #iree independent functions
carry? The answer is that the three components of E are not really as independent as
they look; in fact, they are explicitly interrelated by the very condition we started with,
V x E = 0. In terms of components,

0E, OE, oE, OF, ok, OF;

dy 9z 0z ax

4

0y ox

This brings us back to my observation at the beginning of Sect. 2.3.1: E is a very special
kind of vector. What the potential formulation does is to exploit this feature to maximum
advantage, reducing a vector problem down to a scalar one, in which there is no need to
fuss with components.
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(iii) The reference point ().  There is an essential ambiguity in the definition of
potential, since the choice of reference point () was arbitrary. Changing reference points
amounts to adding a constant K to the potential:

r O r
v’(r)z—f E-dl:—f E-di—fE.dl:K—{—V(r),
! 4 O

where K is the line integral of E from the old reference point O to the new one &', Of
course, adding a constant to V will not affect the potential difference between two points:

V(b) — V'(a) = V(b) — V(a),

since the K’s cancel out. (Actually, it was already clear from Eq. 2.22 that the potential
difference is independent of O, because it can be written as the line integral of E from a to
b, with no reference to .) Nor does the ambiguity affect the gradient of V:

vV =VV,

since the derivative of a constant is zero. That’s why all such V’s, differing only in their
choice of reference point, correspond to the same field E.

Evidently potential as such carries no real physical significance, for at any given point
we can adjust its value at will by a suitable relocation of (0. In this sense it is rather like
altitude: If I ask you how high Denver is, you will probably tell me its height above sea level,
because that 1s a convenient and traditional reference point. But we could as well agree
to measure altitude above Washington D.C., or Greenwich, or wherever. That would add
(or, rather, subtract) a fixed amount from all our sea-level readings, but it wouldn’t change
anything about the real world. The only quantity of intrinsic interest is the difference in
altitude between two points, and that is the same whatever your reference level.

Having said this, however, there is a “natural” spot to use for O in electrostatics—
analogous to sea level for altitude—and that is a point infinitely far from the charge. Or-
dinarily, then, we “set the zero of potential at infinity.” (Since V(Q) = 0, choosing a
reference point is equivalent to selecting a place where V is to be zero.) But I must warn
you that there is one special circumstance in which this convention fails: when the charge
distribution itself extends to infinity. The symptom of trouble, in such cases, is that the
potential blows up. For instance, the field of a uniformly charged plane is (o /2¢g)n, as we
found in Ex. 2.4; if we naively put O = oc, then the potential at height z above the plane
becomes

“ 1
V(z) = —/ —od; =~—0a(z— o0).
e 260 260
The remedy is simply to choose some other reference point (in this problem you might use
the origin). Notice that the difficulty occurs only in textbook problems; in “real life” there
is no such thing as a charge distribution that goes on forever, and we can always use infinity
as our reference point.
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(iv) Potential obeys the superposition principle. The original superposition princi-
ple of electrodynamics pertains to the force on a test charge Q. It says that the total force
on () is the vector sum of the forces attributable to the source charges individually:

F=F1+F,+...
Dividing through by Q, we find that the electric field, too, obeys the superposition principle:
E=E +E+...

Integrating from the common reference point to r, it follows that the potential also satisfies
such a principle:

V=Vi+Va+...

That is, the potential at any given point is the sum of the potentials due to all the source
charges separately. Only this time it is an ordinary sum, not a vector sum, which makes it
a lot easier to work with.

(v) Units of Potential. In our units, force is measured in newtons and charge in
coulombs, so electric fields are in newtons per coulomb. Accordingly, potential is measured
in newton-meters per coulomb or joules per coulomb. A joule per coulomb is called a volt.

Example 2.6

Find the potential inside and outside a spherical shell of radius R (Fig. 2.31), which carries a
uniform surface charge. Set the reference point at infinity.

Figure 2.31
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Solution: From Gauss’s law, the field outside is

1
dmey

E =

1}
r2”’
where g isthe total charge on the sphere. The field inside is zero. For points outside the sphere

r > R),

r _ 1 q
o dTe r

r -1 d i
V(r)=—/ E-dl= L gy = 1
o dregy Joo r'2 drreg r’

To find the potential inside the sphere (r < R), we must break the integral into two sections,
using in each region the field that prevails there:

-1 (R ¢ 4 1 g
V) = ——dr’ — 0Odr' = —=
(r) 47‘[60 /oo r"2 ’ /R( ) r 47‘[60 r’

R 1 q
+0= =,
o0 47T€0R

Notice that the potential is not zero inside the shell, even though the field is. V is a constant
in this region, to be sure, so that VV = (—that’s what matters. In problems of this type you
must always work your way in from the reference point; that’s where the potential is “nailed
down.” It is tempting to suppose that you could figure out the potential inside the sphere on
the basis of the field there alone, but this is false: The potential inside the sphere is sensitive to
what’s going on outside the sphere as well. If I placed a second uniformly charged shell out at
radius R’ > R, the potential inside R would change, even though the field would still be zero.
Gauss’s law guarantees that charge exterior to a given point (that is, at larger r) produces no
net field at that point, provided it is spherically or cylindrically symmetric; but there is no such
rule for potential, when infinity is used as the reference point.

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere whose
radius is R and whose total charge is ¢. Use infinity as your reference point. Compute the
gradient of V in each region, and check that it yields the correct field. Sketch V(r).

Problem 2.22 Find the potential a distance s from an infinitely long straight wire that carries
a uniform line charge A. Compute the gradient of your potential, and check that it yields the
correct field.

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the center, using
infinity as your reference point.

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference between a point
on the axis and a point on the outer cylinder. Note that it is not necessary to commit yourself
to a particular reference point if you use Eq. 2.22.
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2.3.3 Poisson’s Equation and Laplace’s Equation

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a scalar
potential.

E=-VV.

The question arises: What do the fundamental equations for E,

VE=— and VXE=0,

look like, in terms of V? Well, V-E = V . (=V V) = —V?V_ 50, apart from that persisting
minus sign, the divergence of E is the Laplacian of V. Gauss’s law then says that

vy = 2, (2.24)

€0

This is known as Poisson’s equation. In regions where there is no charge, so that p = 0,
Poisson’s equation reduces to Laplace’s equation,

ViV =0. (2.25)

We’ll explore these equations more fully in Chapter 3.
So much for Gauss’s law. What about the curl law? This says that

VXE=V x(=VV)

must equal zero. But that’s no condition on V—curl of gradient is always zero. Of course,
we used the curl law to show that E could be expressed as the gradient of a scalar, so it’s not
really surprising that this works out: V x E = 0 permits E = —VV;inreturn, E = —-VV
guarantees V x E = 0. It takes only one differential equation (Poisson’s) to determine V,
because V is a scalar; for E we needed rwo, the divergence and the curl.

2.3.4 The Potential of a Localized Charge Distribution

I defined V interms of E (Eq. 2.21). Ordinarily, though, it’s E that we’re looking for (if we
already knew E there wouldn’t be much point in calculating V). The idea is that it might be
easier to get V first, and then calculate E by taking the gradient. Typically, then, we know
where the charge is (that is, we know p), and we want to find V. Now, Poisson’s equation
relates V and p, but unfortunately it’s “the wrong way around”: it would give us p, if we
knew V., whereas we want V, knowing o. What we must do, then, is “invert” Poisson’s
equation. That’s the program for this section, although I shall do it by roundabout means,
beginning, as always, with a point charge at the origin.
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Figure 2.32

Setting the reference point at infinity, the potential of a point charge g at the origin is

r

1 r 1
— % dr' = i, = 1
4rey Joo ¥ dregr'|,, dmegr

Vir) =

(You see here the special virtue of using infinity for the reference point: it kills the lower
limit on the integral.) Notice the sign of V; presumably the conventional minus sign in
the definition of V (Eq. 2.21) was chosen precisely in order to make the potential of a
positive charge come out positive. It is useful to remember that regions of positive charge
are potential “hills,” regions of negative charge are potential “valleys,” and the electric field
points “downhill,” from plus toward minus.

In general, the potential of a point charge ¢ is

1
V)= —2, (2.26)
dmeg 2

where 2, as always, is the distance from the charge to r (Fig. 2.32). Invoking the superpo-
sition principle, then, the potential of a collection of charges is

1]
V() = y & 2.27)
]TGO 1=] l
or, for a continuous distribution,
1% ! ] ! d (2.28)
r=——| —-dgq. .
(r) 4 eg 2 1
In particular, for a volume charge, it’s
1 r
vy = [ 25 4o (2.29)
4meg 3

This is the equation we were looking for, telling us how to compute ¥V when we know p; it
is, if you like, the “solution” to Poisson’s equation, for a localized charge distribution.> 1

5Equation 2.29 is an example of the Helmholtz theorem (Appendix B), in the context of electrostatics, where
the curl of E is zero and its divergence is p/€g.
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invite you to compare Eq. 2.29 with the corresponding formula for the electric field in terms

of p (Eq. 2.8):
1 .
[p(r)adt’.
dreg 22

The main point to notice is that the pesky unit vector % is now missing, so there is no need
to worry about components. Incidentally, the potentials of line and surface charges are

! f MO g f ) b (2.30)

dmreq 2 dmeg 2

E(r) =

I should warn you that everything in this section is predicated on the assumption that
the reference point is at infinity. This is hardly apparent in Eq. 2.29, but remember that we
got that equation from the potential of a point charge at the origin, (1/4mep)(g/r), which
is valid only when O = co. If you try to apply these formulas to one of those artificial
problems in which the charge itself extends to infinity, the integral will diverge.

Example 2.7
Find the potential of a uniformly charged spherical shell of radius R (Fig. 2.33).

Solution: This is the same problem we solved in Ex. 2.6, but this time we shall do it using
Eq. 2.30:

V)= — f 2ad
ry= —aa.
dreg J 2
Let’s set the point r on the z axis and use the law of cosines to express 2 in terms of the polar

angle 6:
2?2 = R? + z2 —2Rzcos8’.

Figure 2.33
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An element of surface area on this sphere is R sin ¢’ d¢’ d¢’, so
R%sing’ do’ dg’
4JTE()V(Z) = g
\/R2 + 72 —2Rzcosd’
f” sing’
(o}
0 \/R2 4+ 72 —2Rzcosd’

1
= 27TR20’ (R—\/RZ +72 - 2chos0’)
z

= 27R? ae’

T

0

27 Ro
- (\/R2+z2+2Rz—\/R2+22—2Rz)
<

= Z”ZR“ [V&+27-VR=-27].

Atthis stage we must be very careful to take the positive root. For points outside the sphere, z is
greater than R, and hence /(R — z)? = z— R; for points inside the sphere, /(R — 7)2 = R—z.

Thus,
Ro R%c
Viz) = —[R+72)—(z—R)]=——, outside;
2¢pz €02
R R
V@) = ——[(R+2)—(R—2)]=—, inside.
2e02 €0

In terms of the total charge on the shell, g = 47 R%c, V(2) = (1/4meg)(g/z) (or, in general,
V(r) = (1/4mep)(g/r)) for points outside the sphere, and (1/47€g)(g/ R) for points inside,

Of course, in this particular case, it was easier to get V by using 2.21 than 2.30, because
Gauss’s law gave us E with so little effort. But if you compare Ex. 2.7 with Prob. 2.7, you will
appreciate the power of the potential formulation.

Problem 2.25 Using Egs. 2.27 and 2.30, find the potentiat at a distance z above the center of
the charge distributions in Fig. 2.34. In each case, compute E = —VV and compare your
answers with Prob. 2.2a, Ex. 2.1, and Prob. 2.6, respectively. Suppose that we changed the
right-hand charge in Fig. 2.34a to —q; what then is the potential at P?7 What ficld does that
suggest? Compare your answer to Prob. 2.2b, and explain carefully any discrepancy.

tF e
| |
[ |
z| Z |
| |
| |
i i
t i
— . A
+q d +q 2L
{(a) Two point charges (b) Uniform line charge (c) Uniform surface charge

Figure 2.34
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Problem 2.26 A conical surface (an empty ice-cream cone) carries a uniform surface charge
0. The height of the cone is £, as is the radius of the top. Find the potential difference between
points a (the vertex) and b (the center of the top).

Problem 2.27 Find the potential on the axis of a uniformly charged solid cylinder, a distance
z from the center. The length of the cylinder is L, its radius is R, and the charge density is p.
Use your result to calculate the electric field at this point. (Assume that z > L/2.)

Problem 2.28 Use Eq. 2.29 to calculate the potential inside a uniformly charged solid sphere
of radius R and total charge g. Compare your answer to Prob. 2.21.

Problem 2.29 Check that Eq. 2.29 satisfies Poisson’s equation, by applying the Laplacian and
using Eq. 1.102.

2.3.5 Summary; Electrostatic Boundary Conditions

In the typical electrostatic problem you are given a source charge distribution p, and you
want to find the electric field E it produces. Unless the symmetry of the problem admits a
solution by Gauss’s law, it is generally to your advantage to calculate the potential first, as
an intermediate step. These, then, are the three fundamental quantities of electrostatics: p,
E, and V. We have, in the course of our discussion, derived all six formulas interrelating
them. These equations are neatly summarized in Fig. 2.35. We began with just two exper-
imental observations: (1) the principle of superposition—a broad general rule applying to
all electromagnetic forces, and (2) Coulomb’s law—the fundamental law of electrostatics.
From these, all else followed.

Figure 2.35
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EJ_

EJ.
below

Figure 2.36

You may have noticed, in studying Exs. 2.4 and 2.5, or working problems such as 2.7,
2.11, and 2.16, that the electric field always undergoes a discontinuity when you cross a
surface charge o. In fact, it is a simple matter to find the amount by which E changes at
such a boundary. Suppose we draw a wafer-thin Gaussian pillbox, extending just barely
over the edge in each direction (Fig. 2.36). Gauss’s law states that

1 1
fE-da: _Qenc == —O'A,
€0 €0
S

where A is the area of the pillbox lid. (If o varies from point to point or the surface is
curved, we must pick A to be extremely small.) Now, the sides of the pillbox contribute
nothing to the flux, in the limit as the thickness € goes to zero, so we are left with

1
L 1
E - Ebelow = ;_60’, (231)

above

1
where E bov el

above, and E, . is the same, only just below the surface. For consistency, we let “upward”
be the positive direction for both. Conclusion: The normal component of Eis discontinuous
by an amount o /€y at any boundary. In particular, where there is no surface charge, E-L is
continuous, as for instance at the surface of a uniformly charged solid sphere.

The rangential component of E, by contrast, is always continuous. For if we apply

Eq. 2.19,
fE -dl =0,

to the thin rectangular loop of Fig. 2.37, the ends give nothing (as € — 0), and the sides
give (E! 1 —El. 1), s0

above below

denotes the component of E that is perpendicular to the surface immediately

_gl

below’

EII

above

(2.32)
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Figure 2.37

where El stands for the components of E parallel to the surface. The boundary conditions
on E (Eqgs. 2.31 and 2.32) can be combined into a single formula:

g .
Eabove — Ebelow = %na (2.33)

where fi is a unit vector perpendicular to the surface, pointing from “below” to “above.”®

The potential, meanwhile, is continuous across any boundary (Fig. 2.38), since

b
Vabove — Vbelow = _f E - dl
a
as the path length shrinks to zero, so too does the integral:

Vabove = VbelOW' (2-34)

Figure 2.38

SNotice that it doesn’t matter which side you call “above” and which “below,” since reversal would switch the
direction of i. Incidentally, if you're only interested in the field due to the (essentially flat) local patch of surface
charge itself, the answer is (o/2¢g)hi immediately above the surface, and —(or/2¢p)h immediately below. This
follows from Ex. 2.4, for if you are close enough to the patch it “looks” like an infinite plane. Evidently the entire
discontinuity in E is attributable to this local patch of charge.
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However, the gradien: of V inherits the discontinuity in E; since E = —VV, Eq. 2.33
implies that
| N
VVabove — V Voelow = —%Uﬂ, (2.35)
or, more conveniently,
0 Vabove . 3 Vielow — —LG, (2.36)
an on €0
where v
a A
— =VV-.n (2.37)
on

denotes the normal derivative of V (that is, the rate of change in the direction perpendicular
to the surface).

Please note that these boundary conditions relate the fields and potentials just above and
Jjust below the surface. For example, the derivatives in Eq. 2.36 are the /imiring values as
we approach the surface from either side.

Problem 2.30
(a) Check that the results of Exs. 2.4 and 2.5, and Prob. 2.11, are consistent with Eq. 2.33.

(b) Use Gauss’s law to find the field inside and outside a long hollow cylindrical tube, which
carries a uniform surface charge o. Check that your result is consistent with Eq. 2.33.

(c) Check that the result of Ex. 2.7 is consistent with boundary conditions 2.34 and 2.36.

2.4 Work and Energy in Electrostatics

24.1 The Work Done to Move a Charge

Suppose you have a stationary configuration of source charges, and you want to move a test
charge Q from point a to point b (Fig. 2.39). Question: How much work will you have to
do? At any point along the path, the electric force on Q is F = QE; the force you must
exert, in opposition to this electrical force, is —QE. (If the sign bothers you, think about
lifting a brick: Gravity exerts a force mg downward, but you exert a force mg upward. Of
course, you could apply an even greater force—then the brick would accelerate, and part

qre o
o ® . ‘)Q
Gg.* ® .ql"

Figure 2.39
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of your effort would be “wasted” generating kinetic energy. What we’re interested in here
is the minimum force you must exert to do the job.) The work is therefore

b b
W:/ F-dl:—Q/ E.dl= Q[V(b) — V(a)].

Notice that the answer is independent of the path you take from a to b; in mechanics, then,
we would call the electrostatic force “conservative.” Dividing through by @, we have

Vb) - V(a) = g (2.38)

In words, the potential difference between points a andb is equal to the work per unit charge
required to carry a particle from a to b. In particular, if you want to bring the charge Q in
from far away and stick it at point r, the work you must do is

W = Q[V(r) — V(c0)],
so, if you have set the reference point at infinity,
W= QV(r). (2.39)

In this sense potential is potential energy (the work it takes to create the system) per unit
charge (just as the field is the force per unit charge).

2.4.2 The Energy of a Point Charge Distribution

How much work would it take to assemble an entire collection of point charges? Imagine
bringing in the charges, one by one, from far away (Fig. 2.40). The first charge, ¢, takes
no work, since there is no field yet to fight against. Now bring in ¢;. According to Eq. 2.39,
this will cost you g2 Vi (r3), where V; is the potential due to g, and r; is the place we're

putting g>:
] q1
Wy = —
2 4mreq 7 (’le)

Figure 2.40
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(212 is the distance between ¢ and g2 once they are in position). Now bring in g3; this
requires work g3V 2(r3), where V) > is the potential due to charges g; and g, namely,

(1/4me0)(q1 /213 + g2/223). Thus

1 9 @
W3 = a2y
} 471'60‘2'3 (413 423)

Similarly, the extra work to bring in g4 will be

1 1@
Wy = q4 (q_ — + —
dmeg " \214 204 234

The total work necessary to assembie the first four charges, then, is

W =

1 192 | 3
(qq+qqy+mw+qwl+@@+qw4’
dmep \ 212 213 214 223 224 234

You see the general rule: Take the product of each pair of charges, divide by their separation

distance, and add it all up:
1 n h ql q]
= . 2.40
4meg IZ_: Z 2ij ( )

=1 j=1
J=i

The stipulation j > i is just to remind you not to count the same pair twice. A nicer way
to accomplish the same purpose is infentionally to count each pair twice, and then divide

by 2:
Bmep ' 4 '
i=1 j=1
i
(we must still avoid i = j, of course). Notice that in this form the answer plainly does not
depend on the order in which you assemble the charges, since every pair occurs in the sum.

Let me next pull out the factor g;:

qi
qu Z4T[Eo’j

I=

J#

The term in parentheses is the potential at point r; (the position of g;) due to all the other
charges—all of them, now, not just the ones that were present at some stage in the building-
up process. Thus,

1 n
=§§:%me (2.42)
i=1

That’s how much work it takes to assemble a configuration of point charges; it’s also the
amount of work you’d get back out if you dismantled the system. In the meantime, it
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represents energy stored in the configuration (“potential” energy, if you like, though for
obvious reasons I prefer to avoid that word in this context).

Problem 2.31

(a) Three charges are situated at the corners of a square (side a), as shown in Fig. 2.41. How
much work does it take to bring in another charge, +¢g, from far away and place it in the fourth
corner?

(b) How much work does it take to assemble the whole configuration of four charges?

-4

+tq -q

Figure 2.41

2.4.3 The Energy of a Continuous Charge Distribution
For a volume charge density p, Eq. 2.42 becomes

1

W= f oV dr. (2.43)

(The corresponding integrals for line and surface charges would be [ AV di and [ oV da,
respectively.) There is a lovely way to rewrite this result, in which p and V are eliminated
in favor of E. First use Gauss’s law to express p in terms of E:

p=eV -E, so szzgf(V-E)Vdr‘

Now use integration by parts (Eq. 1.59) to transfer the derivative from E to V:

W:%"[—/E-(vvmﬁuj{m-da].

But VV = —E, so

W:%O /Ezdr+§£VE-da . (2.44)
% S
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But what volume is this we're integrating over? Let’s go back to the formula we started
with, Eq. 2.43. From its derivation, it is clear that we should integrate over the region
where the charge is located. But actually, any larger volume would do just as well: The
“extra” territory we throw in will contribute nothing to the integral anyway, since p = 0
out there. With this in mind, let’s return to Eq. 2.44. What happens here, as we enlarge the
volume beyond the minimum necessary to trap all the charge? Well, the integral of E? can
only increase (the integrand being positive); evidently the surface integral must decrease
correspondingly to leave the sum intact. In fact, at large distances from the charge, £ goes
like 1/r? and V like 1/r, while the surface area grows like »>. Roughly speaking, then,
the surface integral goes down like 1/r. Please understand that Eq. 2.44 gives you the
correct energy W, whatever volume you use (as long as it encloses all the charge), but the
contribution from the volume integral goes up, and that of the surface integral goes down,
as you take larger and larger volumes. In particular, why not integrate over al/ space? Then
the surface integral goes to zero, and we are left with

W:Z—O / Edx. (2.45)

all space

Example 2.8

Find the energy of a uniformly charged spherical shell of total charge ¢ and radius R.

Solution 1: Use Eq. 2.43, in the version appropriate to surface charges:

1
szfana.
2

Now, the potential at the surface of this sphere is (1/47€p)g /R (a constant), so

Solution 2: Use Eq. 2.45. Inside the sphere E = 0; outside,

2 q
. Ef= ———.
deq r? (4meg)?rt

Therefore,

2(dmen)?

outside

2
Wit = —0 f (%)(rzsinéidrdﬁdfﬁ)

1 | 1 ¢°
- g4 f —dr = .
3272¢ R r? 8mep R
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Problem 2.32 Find the energy stored in a uniformly charged solid sphere of radius R and
charge ¢. Do it three different ways:

(a) Use Eq. 2.43. You found the potential in Prob. 2.21.
(b) Use Eq. 2.45. Don’t forget to integrate over all space.

(c) Use Eq. 2.44. Take a spherical volume of radius a. Notice what happens as a — oo.

Problem 2.33 Here is a fourth way of computing the energy of a uniformly charged sphere:
Assemble the sphere layer by layer, each time bringing in an infinitesimal charge dg from far
away and smearing it uniformly over the surface, thereby increasing the radius. How much
work d W does it take to build up the radius by an amount dr? Integrate this to find the work
necessary to create the entire sphere of radius R and total charge g.

2.4.4 Comments on Electrostatic Energy

(i) A perplexing “inconsistency.” Equation 2.45 clearly implies that the energy of a
stationary charge distribution is always positive. On the other hand, Eq. 2.42 (from which
2.45 was in fact derived), can be positive or negative. For instance, according to 2.42, the
energy of two equal but opposite charges a distance = apart would be —(1/4me)(g? /2).
What’s gone wrong? Which equation is correct?

The answer is that both equations are correct, but they pertain to slightly different
situations. Equation 2.42 does not take into account the work necessary to make the point
charges in the first place; we started with point charges and simply found the work required
to bring them together. This is wise policy, since Eq. 2.45 indicates that the energy of a
point charge is in fact infinite:

2 2 o
€0 f(%) (2 sin 0 dr d6 dp) — 8q f —dr = .
0

W= ——
2(4mep)? r Te r2

Equation 2.45 is more complete, in the sense that it tells you the fotal energy stored in
a charge configuration, but Eq. 2.42 is more appropriate when you’'re dealing with point
charges, because we prefer (for good reason!) to leave out that portion of the total energy
that is attributable to the fabrication of the point charges themselves. In practice, after
all, the point charges (electrons, say) are given to us ready-made; all we do is move them
around. Since we did not put them together, and we cannot take them apart, it is immaterial
how much work the process would involve. (Still, the infinite energy of a point charge
is a recurring source of embartassment for electromagnetic theory, afflicting the quantum
version as well as the classical. We shall return to the problem in Chapter 11.)

Now, you may wonder where the inconsistency crept into an apparently water-tight
derivation. The “flaw” lies between Eqs. 2.42 and 2.43: In the former, V(r;) represents
the potential due to all the other charges but not ¢;, whereas in the latter, V (r) is the full
potential. For a continuous distribution there is no distinction, since the amount of charge
right at the point r is vanishingly small, and its contribution to the potential is zero.




96 CHAPTER 2. ELECTROSTATICS

(i) Where is the energy stored? Equations 2.43 and 2.45 offer two different ways of
calculating the same thing. The first is an integral over the charge distribution; the second
1s an integral over the field. These can involve completely different regions. For instance,
in the case of the spherical shell (Ex. 2.8) the charge is confined to the surface, whereas the
electric field is present everywhere outside this surface. Where is the energy, then? Is it
stored in the field, as Eq. 2.45 seems to suggest, or is it stored in the charge, as Eq. 2.43
implies? At the present level, this 1s simply an unanswerable question: I can tell you what
the total energy is, and I can provide you with several different ways to compute it, but it is
unnecessary to worty about where the energy is located. In the context of radiation theory
(Chapter 11) it is useful (and in General Relativity 1t is essential) to regard the energy as
being stored in the field, with a density

%0 E? = energy per unit volume. (2.46)

But in electrostatics one could just as well say it is stored in the charge, with a density % pv.
The difference is purely a matter of bookkeeping.

(iii) The superposition principle. Because electrostatic energy is quadratic in the
fields, it does not obey a superposition principle. The energy of a compound system is not
the sum of the energies of its parts considered separately—there are also “cross terms”:

Wt = %Oszdt:%O[(El—FEz)zdr

€
= 30[(15]2+E§+2E1.E2)dr
= W+ W2+€0/E1 -Erdr. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.34 Consider two concentric spherical shells, of radii ¢ and b. Suppose the inner
one carries a charge ¢, and the outer one a charge —g (both of them uniformly distributed
over the surface). Calculate the energy of this configuration, (a) using Eq. 2.45, and (b) using
Eq. 2.47 and the results of Ex. 2.8.

2.5 Conductors

2.5.1 Basic Properties

In an insulator, such as glass or rubber, each electron is attached to a particular atom. In a
metallic conductor, by contrast, one or more electrons per atom are free to roam about at will
through the material. (In liquid conductors such as salt water it is ions that do the moving.)
A perfect conductor would be a material containing an unlimited supply of completely free




