CHAPTER TWO

CONDUCTION

Heat transfer deals with the study of rates at which exchange of heat takes place between
a hot source and a cold receiver. In process industries there are many operations which
involve transfer of energy in the form of heat, e.g., evaporation, distillation, drying, etc. and
also chemical reactions carried on a commercial scale take place with evolution or
absorption of heat. It is also necessary to prevent the loss of heat from a hot vessel or a pipe
system to the ambient air. In all these cases, the major problem is that of transfer of heat at
the desired rate. The knowledge of laws of heat transfer, mechanisms of heat transfer and
process heat transfer equipments is of great importance from a stand point of controlling the
flow of heat in the desired manner.

It is well established fact that if two bodies at different temperatures are brought into
thermal contact, heat flows fromr a hot body to a relatively cold body (second law of
thermodynamics). The net flow of heat is always in the direction of decrease in the
temperature. Thus, heat is defined as a form of energy which is in transit between a hot
source and a cold receiver. The transfer of heat solely depends upon the temperatures of the
two bodies/substances/parts of a system. In other words, temperature can be termed as the
level of thermal (heat) energy, i.e., high temperature of a body is the indication of high level
of heat energy content of the body.

Heat may flow by any one or more of the three basic mechanisms, namely, conduction,
convection, and radiation. We will first see these three modes of heat transfer in brief and
then we will consider heat conduction through solids in detail.

Conduction : It is the transfer of heat from one part of a body to the another part of the
same body or from one body to another which is in physical contact with it, without
appreciable displacement of particles of a body. Conduction is restricted to the flow of heat
in solids. Examples of conduction : Heat flow through the brick wall of a furnace, the metal
sheet of a boiler and the metal wall of a heat exchanger tube.

Convection : It is the transfer of heat from one point to another point within a fluid
(gas or liquid) by mixing of hot and cold portions of the fluid. It is attributed to the
macroscopic motion of fluid. Convection is restricted to the flow of heat in fluids and is
closely associated with fluid mechanics. In natural convection, the fluid motion results from
the difference in densities of the warmer and cooler fluid arising from the temperature
difference in the fluid mass. In forced convection, the fluid motion is produced by
mechanical means such as an agitator, a fan or pump. Examples of heat transfer mainly by
convection are : heating of room by means of a steam radiator, heating of water in cooking
pans, heat flow to a fluid pumped through a heated pipe.

(2.1)
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Radiation : Radiation refers to the transfer of heat energy from one body to another
through space, not in contact with it, by electromagnetic waves. Examples of heat transfer by
radiation mode are : the transfer of heat from the sun to the earth and the loss of heat from an
unlagged steam pipe to the ambient air.

Conduction as well as convection occurs only in the presence of material medium
whereas radiation can occur even in vacuum and no material medium is required for heat
flow by radiation. It is observed that heat flow by conduction is slow, faster by convection
and the fastest by radiation mode.

CONDUCTION :

It is our common observation that when some material object is heated at one of its
locations, then in a short while its remaining parts also get heated. This shows that heat flows
through the material object from a high temperature region to a low téfnperature region. The
flow of heat in this manner is called as heat conduction or simply conduction, wherein the
particles of object participate in the process but they do not move hodily from the hot or high
temperature region to the cold or low temperature region. :

Conduction is the mode of heat transfer in which a material medium transporting the heat
remains at rest. The heat conduction occurs by the migration of molecules and more
effectively by the collision of the molecules vibrating around relatively fixed positions. In
liquids and solids where little or no migration occurs, heat is transferred by the collision of
vibrating molecules. [The molecules of a substance are always in a state of vibration. When
the substance is heated at one of its locations, the molecules of that location receive energy
and they begin to vibrate with larger amplitudes and as a result of increase in their amplitude,
they will collide with the neighbouring molecules and in the process they transfer a part of
their energy to the neighbouring molecules. This process occurs repeatedly and thus results
in heat flow from one molecule to another along the heat flow path i.e. through the
substance.]

Conduction refers to the mode of heat transfer in which the heat flow through the
material medium occurs without actual migration of particles of the medium from a region of
higher temperature to a region of lower temperature.

It is a fact that conduction occurs in solids, liquids and gases but pure conduction is
found to present only in solids, with gases and liquids it is present with convection, so we
will consider here heat conduction in solids for better understanding of conduction
mechanism as convection is not present in solids.

In this chapter, we restrict our discussion to steady state unidirectional heat
conduction in solids. |

By steady state heat flow we mean that the situation of heat flow in which the
temperature at any location along the heat flow path does not vary with time and the rate of
heat transfer does not vary with time. In other words, it is the heat flow under conditions of
constant temperature distribution-temperature is a function of location only, i.e., temperature
varies with location but not with time. Hence, steady state heat conduction is the heat transfer
by conduction under conditions of constant temperature distribution.
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By unidirectional or one dimensional heat flow we mean that the flow of heat occurring
only in one direction, i.e., along one of the axes of the respective coordinate system used.
(For example, say along the x-direction in case of a Cartesian co-ordinate system).

Fourier's Law :

The physical law governing the transfer of heat through a uniform material (whenever a
temperature difference exists) by a conduction mode was given by the French scientist :
Joseph Fourier.

Fourier's law states that the rate of heat flow by conduction through a uniform (fixed)
material is directly proportional to the area normal to the direction of the heat flow and the
temperature gradient in the direction of the heat flow.

Mathematically, the Fourier's law of heat conduction for steady state heat flow is given
by

Q o A[-dT/dn] .. (2.1
Q = —KkA [dT/dn] .. (22)

where Q is the rate of heat flow/transfer in watts (W), A is the area normal to the direction of
heat flow in m?, T is the temperature in K, n is the distance measured normal to the surface,
i.e., the length of conduction path along the heat flow in m, dT/dn is the rate of change of
temperature with distance measured in the direction of heat flow (called as temperature
gradient) in K/m. k is a constant of proportionality and is called the thermal conductivity. It
is the characteristic property of a material through which heat flows.

The negative sign is incorporated in equation (2.2) because the temperature gradient is
negative (since with an increase-inn there is a decrease in T, i.e., temperature decreases in
the direction of heat flow) and it makes the heat flow posmve in the direction of temperature
decrease.

The Fourier's law for a steady state un1d1rect10na1 (say in the x- dlrecuon) heat conduction
then becomes -

Q = —KkA [dT/dx] ‘ .. (2.3)
= Q/A = -k[dT/dx] .. (24

where Q is the rate of heat flow, i.e., heat flow per unit time in W, and q is the heat flux,
1.e., the rate of heat flow per unit area in W/m? (in the x-direction). In further discussion
we will make use of Equation (2.3). The Fourier's law [equation (2.3)] is a fundamental
differential equation of heat transfer by conduction. It is simply a definition of k.

[The heat flux is defined as the amount of heat transfer per unit area per unit time or the
rate of heat transfer per unit area, Q/A.]

One Dimensional Steady State conduction :

Steady state heat conduction is a simpler case in the sense that the temperature does not
vary with time. T is independent of time and is a function of position in the conducting solid.
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One dimensional heat conduction implies that the temperature gradient exists only in one
direction which makes the heat flow unidirectional. The cases of heat flow through a slab
(plane wall), a circular cylinder, a sphere and long fins can be analysed by a one dimensional
steady state conduction. In the discussion to follow we will treat heat flow to be in
x-direction only.

~ In discussion to follow we assume that k does not vary with temperature.

Plane wall (slab) of uniform thickness :

The heat flow through the wall of a stirred tank containing a hot or cold fluid or the wall
of a large furnace can be examples of one dimensional heat flow. Consider a plane/flat wall
as shown in Fig. 2.1.

Hot face o Cold face
T, ’
Heat—»
flow
/dX '—'T2 N
x=0 X=X
—2

Fig. 2.1 : Conduction through a plane wall

Consider that the wall is made of a material of thermal conductivity k and is of uniform
thickness (x) and constant cross-sectional area (A). Assume that k is independent of |
temperature and the area of wall is very large in comparison with the thickness so that the
heat losses from the edges are negligible. A hot face is at temperature T, and a cold face is at
temperature T, and both are isothermal surfaces. The direction of heat flow is perpendicular

to.the wall and T varies in the direction of x-axis.

As in steady state, there can be neither accumulation nor depletion of heat within the
plane wall, Q is constant along the path of heat flow. The usual use of Fourier's law requires
- that the differential equation (2.3) be integrated over the entire path from x = 0 to x = x (total
thickness of the wall) as we normally know temperatures only at the faces.

dT
Q = -k ]
Qdx = —-k-AdT ... (2.5)
The variables in Equation (2.5) are x and T.
X Ty _
Q[ dx = -kA [dT .. (26)
0 Ty .

Q- x = -kA(T,-T) . (2.7
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Rearranging, we get

kA (T,-T
Q = —(—;—22 ... (2.8)
k-A
Q = = - AT ... (2.9)
where AT = (T,-T,)
AT AT )
Q = YA = R ... (2.10)

where R (= x/kA) is the thermal resistance (of the wall material of thickness x), Q is the rate
of heat flow (rate of heat transfer) and AT is the driving force for heat flow.

Equation (2.10) equates the rate of heat flow to the ratio of driving force to thermal
resistance.

The reciprocal of resistance is called the conductance, which for heat conduction is :
Conductance = 1/R = 1/(x/kA) =k.A/x .. (2.11)

Both the resistance and conductance depend upon the dimensions of a solid as well as on
the thermal conductivity, a property of the material.

When k varies linearly with T (Equation 2.12), Equation (2.10) can be used rigorously by
taking an average value k fork. k may be obtained either by using the arithmetic average of

the individual values of k at surface temperatures T, and T, [k = (k; + k,)/2] or by calculating
the arithmetic average of temperatures [(T, + T,)/2] and using the value of k at that
temperature. One can take linear variation of k with T under integration s1gn and integrate
the equation.

Thermal Conductivity :

The proportionality constant 'k' given in Equation (2.2) is called as the thermal
conductivity. It is a characteristic property of the material through which heat is flowing and
varies with temperature. It is one of the so called transport properties of the material (like
viscosity, lL).

Thermal conductivity is a measure of the ability of a substance to conduct heat. Larger
the value of k, higher will be the amount of heat conducted by that substance.

Thermal conductivity is the quantity of heat passing through a quantity of material of
unit thickness with unit heat flow area in unit time when a unit temperature difference is
maintained across the opposite foees of material.

If Q is measured in watts (W =1J/s), Ain m? x in m and T in K, then the unit of k
(thermal conductivity) in the SI system is W/(m.K).
Q = -kA (dT/dx)
-Q-dx W-m
A.dT ’° (m?- K)

k =

- —_Q_a_siT_, W/(m - K) = J/(s.mK)
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Thermal conductivity depends upon the nature of material and its temperature. Thermal
conductivities of solids are higher than that of liquids and liquids are having higher thermal
conductivities than for gases.

In general, thermal conductivity of gases ranges from 0.006 to 0.6 W/(m-:K) while that of
liquids ranges from 0.09 to 0.7 W/(m-K). Thermal conductivity of metals varies from
2.3 to 420 W/(m-K). The materials having higher values of thermal conductivity are referred
to as good conductors of heat, e.g., metals. The best conductor of heat is silver
[k = 420 W/(m-K)] followed by red copper [k = 395 W/(m-K)], gold [k = 302 W/(m- K)] and
aluminium [k =210 W/(m-K)]. The materials having low values of thermal conductivity
[less than 0.20 W/(m-K)] are called as and used as heat insulators to minimise the rate of
heat flow. e.g. asbestos, glass wool, cork, etc.

For small temperature ranges, thermal conductivity may be taken as constant but for
large temperature ranges, it varies linearly with temperature and the variation of the thermal
conductivity with temperature is given by the relationship \

. k = a+bT | ... (2.12)
where a and b are empirical constants and T is the temperature in K.
Compound resistances in series / Heat conduction through a composite plane wall :

When a wall is formed out of a series of layers of different materials, it is called as a
composite wall. :

Consider a flat wall constructed of a series of layers of three different materials as shown
in Fig. 2.2. Let k,, k, and k; be the thermal conductivities of the materials of which layers are
made. Let thicknesses of the layers be x,, x, and x; respectively.

Let AT, be the temperature drop across the first layer, AT, that across the second layer
and AT; that across/over the third layer. Let AT be the temperature drop across the entire
composite wall.

T
T1 >T'>T">T2
Heat flow (T"and T" are interface
temperatures)
Q
Heat flow

Fig. 2.2 : Conduction through resistances in series
Let T;, T', T" and T, be the temperatures at the faces of the wall as shown in Fig. 2.2.
T, is the temperature of the hot face and T, is the temperature of the cold face.
Assume further that the layers are in excellent thermal contact.
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Furthermore, let the area of the composite wall, at right angles to the plane of illustration,
be A.

Overall temperature drop is related to individual temperature drops over the layers by
equation :

AT = AT+ AT,+ AT, .. (2.13)

It is desired to derive an equation / formula giving the rate of heat flow through a series
of resistances.

Rate of heat flow through the layer-1, i.e., through the material of thermal conductivity k,
is given by

k,A
Q, = )‘(—1 (T,=T) .. (2.14)
: Q |
AT, = T,-T ... (2.16)
Q
ATl = (klA/XI) e (2.17)
Similarly for layer-2
1 n Q \
AT, = (T—T)=(—k2'A—jx—2) ... (2.18)
and for layer-3 : | :
" Q
AT, = (T" =T =(_1<3K'jx_3) ... (2.19)
Adding Equations (2.17), (2.18) and (2.19), we get
Q Q, Qs ]
AT] + AT2 + AT3 = (klA/XI) + (sz/XZ) + (k3A/X3) =AT e (2.20)

Under steady state conditions of heat flow, all the heat passing through the layer-1 (first
resistance) must pass through the layer-2 (second resistance) and in turn pass through the
layer-3 (third resistance), therefore Q,, Q, and Q; must be equal and can be denoted by Q.

Thus, using this fact, Equation (2.20) becomes
Q Q Q ... (2.21)

AKX + oAk + oAy = AT
Q[ o+ 1 }‘AT (2.22)
KAX) T (GA/X) T (kAKX |~ @
AT
kAKXt kAK, T k3A/x3]

AT
Q =rx  x X3] .. (224)

KA T A TA
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Let R;, R, and R, be the thermal resistances offered by the layer-1, 2 and 3 respectively
R;, R;and R; are given as :

Rl = Xl/klA e (2.25
R2 = Xz/sz - . (226
and R; = x,/k;A .. (2.27
With this Equation (2.24) becomes
AT
Q - R]+R2+R3 ) - (228)

If R is the overall resistance, then for resistances in series, we have :
R = R,+R,+R, .. (229)
Equation (2.28) becomes : ‘

= %I ... (2.30)

Equation (2.30) is used to calculate the rate of heat flow/heat transfer. It is the ratio of the
overall temperature drop (driving force) to the overall resistance of the composite wall.
Equation (2.30) 1is the same as the equation for the rate of any process :

Driving force
Resistance

‘Rate of transfer process =

One can calculate the temperatures at the interfaces of layers of which the wall is made
by making use of the following retation :

AT AT, AT, AT,
R"R “R& =X .. (231)

Based upon the thickness and thermal conductivity of a layer, temperature drop in that
layer may be large or small fraction of the total temperature drop. A thin layer with a low
thermal conductivity value may cause a much larger temperature drop and a steeper thermal
gradient than a thick layer having a high thermal conductivity.

Heat flow through a cylinder :

Consider a thick walled hollow cylinder as shown in Fig. 2.3 of inside radius r;, outside
radius r, and length L. Let k be the thermal conductivity of the material of cylinder.

Let the tempgrature of the inside surface be T, and that of the outside surface be T,.
Assume that T, > T,, therefore heat flows from the inside of the cylinder to the outside. It is
desired to calculate the rate of heat flow for this case.

e —
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Fig. 2.3 : Heat flow through thick walled cylinder
Consider a very thin cylinder (cylindrical element), concentric with the main cylinder,
of radius r, where r is in between r, and r,. The thickness of wall of this cylindrical element is

dr.
The rate of heat flow at any radius r is given by

Q = -k2mL (%%:) ... (2.32)

e

Equation (2.32) is similar to Equation (2.3). Here the area perpendicular to the heat flow
is 2nrL and dx of Equation (2.3) is equal to dr. -
Rearranging Equation (2.32), we get
dr  -k(@nL)
r— Q
the only variables in Equation (2.33) are r and T (assuming k to be constant).
Integrating Equation (2.33) between the limits

dT ... (2.33)

when r=r1, , T =T,
and when r=r, , T = T, gives
Iy Ty
d -k (2wl
J <= __gQ_) [ ar . (234)
I Ty

Int,-Inr, = — k(mg(Tz"T‘) .. (2.35)

In (r,/r)) = k(an)éT‘_TZ) ... (2.36)

The rate of heat flow through a thick walled cylinder is
k@) (T,-T)
In (ry/r))
Equation (2.3) can be used to calculate the flow of heat\through a thick walled cylinder.

.. (2.37)

R —

It can be put into a more convenient form by expressing the rate of heat flow as :
k @rrl) (T, - To)
B (r,— 1)

... (2.38)
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where 1, is the logarithmic mean radius and is given by

(r;—1,) (r,—1y)

fm = In (tr,) = 2303 log () - (2.39)
Ap = 2nr L ... (2.40)
A, is called the logarithmic mean area.
Equation (2.38) becomes :
_ KAR(T,-Ty

... (241)

(1'2 -1)

(T,-T) AT
Q=T-1)/kAs = R

where R = (r,-1)/kAy

The RHS of Equation (2.39) is known as the logarithmic mean and in the particular case

of Equation (2.39), rp, is known as the logarithmic mean radius. It is the radius which when

applied to the integrated equation for a flat wall, will give the correct rate of heat flow
through a thick-walled cylinder. '

In case of thin-walled cylinders, the logarithmic mean is less convenient than the
arithmetic mean, and the arithmetic mean is used without an appreciable error.
‘ 1.0

T 0.95 NG
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< 0.85
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\\
0-8 \
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ity —»

Fig. 2.4 : Relation between logarithmic and arithmetic means
Heat flow through a sphere :

- Consider a hollow sphere of inner radius r; and outer radius r,. Let T, be the temperature
at the inner surface and T, be the temperature at the outer surface. Assume that T, > T,,
so that heat will flow from inside to outside.

. . \-""“ M M
Consider a spherical element at any radius r (between r, and 1,) of thickness dr.
Then rate of heat flow according to Fourier's law is given by

Q= _i((4m2)‘(ii_'f | | - .. (2.42)

where A = 4mr? = area of heat transfer
k = thermal conductivity of a material of which sphere is made
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Rearranging Equation (2.42), we get

dr —4nk
}Z =7Q dT - ... (2.43)
Integrating Equation (2.43) between the limits :
when r=r , T=T,
and r = 1'2 ’ T = T2
r T2
dr — 47k
T =0 [ ar | .. (244)
I Ty .
1}“ — 4nk
-~ = T,-T ... (245
[r o (T-T) (2.43)
1 1 4nk ,
[:rl - rz] = Q (Tl- T2) N (2.46)
Rearranging, we get
4nk (T,-T
Q = 1( | - .. (247)
il '
dnrr, k (T,—T,)
Q = (t,—1;) ... (2.48)
. Im = \/rl r, = mean radius which is geometric mean for sphere.
. Equation (2.48) becomes :
2
Ak (T,-T
_ Ak (T, -Ty) .. (2.49)

(r,—17)
Thermal Insulation : ‘

Process equipments such as a reaction vessel, reboiler, distillation column, evaporator,
etc. or a steam pipe will lose heat to the atmosphere by conduction, convection and radiation.
In such cases, the conservation of heat that is usually of steam and coal is an economic
necessity and therefore some form of lagging should be applied to the hot surfaces. In
furnaces, the surface temperature is reduced substantially by making use of a series of
insulating bricks that are poor conductors of heat.

Insulation is necessary (i) to prevent an excessive flow of heat to the surroundings from
process units and pipelines in which heat is generated, stored or conveyed at temperatures
above the surrounding temperature, (ii) to prevent an excessive flow of heat from the outside
to materials which must be kept at temperatures below that of the surroundings, (iii) to
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provide for protection of personnel from skin damage through contact with very hot and very
cold surfaces (to provide a safe work environment) and (iv) to provide
comfortable/acceptable working environment. The working environment in the viscinity of
process units and pipelines carrying hot or cold streams can become uncomfortable and
unacceptable, if insulation is not provided. In a chemical plant, steam is transported to
process equipments, as per requirement, through steam lines. If the steam lines are not
insulated, then the loss of heat from these lines to the ambient air may result in the
condensation of steam, thus lowering the quality of steam and creating operational problems
in the equipments in which the steam is admitted.

The important requirements of an insulating material are as follows :
(i) It should have a low thermal conductivity.
(i1) It should withstand working temperature range.

(ii)) It should have a sufficient durability and an adequate mechanical strength. This ]

includes resistance to moisture and the chemical environment.

(iv) It should be easy to apply, non-toxic, readily available, inexpensive (low basic
material cost, installation cost and maintenance cost).

(v) It should not create a fire hazard.

Cork [k = 0.025 W/(m-K)], asbestos (k = 0.10), glass wool (k = 0.024), 85 percent
magnesia (k = 0.04) are commonly employed lagging materials in industry. Cork is common
in refrigeration plants. 85% magnesia with asbestos, glass wool are widely used for lagging
steam pipes. Thin aluminium sheeting is often used to protect the lagging.

The optimum thickness of insulation :

The optimum thickness of an insulation is obtained by a purely economic approach. The
greater the thickness, the lower the heat loss and the greater the initial cost of insulation and
the greater the annual fixed charges (maintenance and depreciation).

It is obtained by a purely economic approach. Increasing the thickness of an insulation
reduces the loss of heat and thus gives saving in operating costs; but at the same time, cost of
insulation will increase with thickness. The optimum thickness of an insulation is the one at
which the total annual cost (the sum of the cost of heat lost and annual fixed charges) of the

insulation is minimum.
A

Qtal_cost

?.\,@‘3 heat lost

Optimum

Total annual cost —»

>
Thickness of insulation —»

Fig. 2.5 : Optimum thickness of insulation
Note : Discussion on systems with variable k and critical radius of insulation is given
at the end of this chapter.

\
\

\
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SOLVED EXAMPLES

Example 2.1 : Calculate the rate of heat loss Q, through a wall of red brick
[k = 0.70 W/(m:K)] 5 m in length, 4 m in height and 250 mm in thickness, if the wall surfaces
are maintained at 373 K (100° C) and 303 K (30° C) respectively. A
Solution : Mean area of heat transfer = A =5 x4 =20 m?
Thickness of brick wall = x =250 mm = 0.25 m
Temperature difference = AT =373 -303=70K

Thermal conductivity of red brick =k = 0.70 W/(m-K)
The rate of heat loss is

AT 70
Q =kA [—;} = 0.70 x 20 x [0'25} = 3920 W ... Ans.

Example 2.2 : Estimate the heat loss per m? of the surface through a brick wall 0.5 m
thick when the inner surface is at 400 K (127° C) and the outside surface is at 310 K (37° C).
The thermal conductivity of the brick may be taken as 0.7 W/(m-K).

Solution : Let the area of heat transfer be 1 m”.

k-A(T,-T
We have : = (x] 2)
where k = 0.7 W/(m-K)
A = 1m?
T, = 400K, T,=310K, x =05m

The rate of heat loss per 1 m? area is
0.7 x 1.0 x (400 — 310)
Q = 0.5

Example 2.3 : It is necessary to insulate a flat surface so that the rate of heat loss per
unit area of this surface does not exceed 450 W/m?. The temperature difference across the
insulating layers is 400 K (127°C). Evaluate the thickness of insulation if (a) the insulation is
made of asbestos cement having thermal conductivity of 0.11 W/(m-K), and (b) the insulation
is made of fire clay having thermal conductivity of 0.84 W/(m-K).

Solution : (a) Area of heat transfer = 1 m? since the heat loss is given per 1 m” of area.

Given : Q/A = 450 Wim?, AT = 400K

WithA = 1m?, Q=450W
k for asbestos = 0.11 W/(m-K)
The rate of heat loss is given by

= 126 W/m® ... Ans.

k-A AT
Q ="
_ KAAT
TQ
0.11 x1x400
= 98 mm

Thickness of asbestos cement insulation = 98 mm ... Ans. (a)
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(b) Area of heat transfer = A = 1 m?
- k for fire clay insulation = 0.84 W/(m-K)

AT = 400K
k-A AT

Q ="
_ 0.84x1x400

X = 450
= 0.747 m
= 747 mm |

Thickness of fire clay insulation = 747 mm ... Ans. (b)

- Example 2.4 : A steam pipeline, 150/160 mm in diameter, carries steam. The pipeline is.
lagged with a layer of heat insulating material [k = 0.08 W/(m-K)] of thickness 100 mm. The
temperature drops from 392.8 K (119.8 °C) to 313 K (40 °C) across the insulating surface.
Determine the rate of heat loss per 1 m length of pipe line.

Solution : Consider 1 m of the pipeline.

o o EAnTT)
=T ey
1, = inside radius of insulation

= 160/2 =80 mm = 0.08 m
r, = outside radius of insulation
= 80+ 100=180 mm =0.18 m
L = length of pipeline = 1 m, since the heat loss is to be calculated
per meter of pipe. |

Apn = log mean area=2mry L
2n (r,-r)L 21 (0.18-0.08) x 1

= Ty = In(0.18008) =07 m
k = 0.08 W/(m-K)
T, = 3928K, T,= 313K
The rate of heat loss per unit length of the pipeline is
0.08 x 0.775 x (392.8 — 313)
Q = (0.18 - 0.08)
= 49.5 W/m ... Ans.

Example 2.5 : A wall is made of brick of thermal conductivity 1.0 W/(m-K), 230 mm
. thick. It is lined on the inner face with plaster of thermal conductivity 0.4 W/(m-K) and of
thickness 10 mm. If a temperature difference of 30 K is maintained between the two faces,
what is the heat flow per unit area of wall ?

Solution : Let the area of heat transfer be 1 m?.

Thermal resistance of brick = x,/k;A

0230
R = Too g = 0230KW
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X
Thermal resistance of plaster =R, = E;X
0.010

= 04x 1.0 = Q025 KW

The rate of heat flow per 1 m” area is
_ AT AT
Q =R =R +R,

30
= 0230+ 0.025

= 117.6 W/m’ ... Ans.
Example 2.6 : A steam pipeline, 150/160 mm in diameter, is covered with a layer
of insulating material of thickness 50 mm. The temperature inside the pipeline is

393 K (120 °C) and that of the outside surface of insulation is 313 K (40 °C). Calculate the
rate of heat loss per 1 m length of pipeline.

Data : k for pipe is 50 W/(m-K) and k for insulating material is 0.08 W/(m-K).

Solution : Consider 1 m of the pipeline.

rL,—T
Thermal resistance offered by the pipe wall =R, = kzl A 1
m;

where 1, = 150/2 =75 mm =0.075m
r, = 160/2 =80 mm =0.08 m

Ay, = 201y L
where Ap, is the log mean area and rp, is the log mean radius of the steam pipe.

27 (1'2 1)
Am = Tn(cjr)

271 (0.08 — 0.075)

= TIn (0.08/0.075) X1 = 0487 m?
k, = 50 W/(m-K)
0.08 — 0.075
Ri = 5o oag = 0-000205 K/W
= 2.05x 104K/W
-1,

Thermal resistance offered by the insulation = R, = %Aq
my

Am2 = 2Nry, L

2n (r;—1,) L
= In(ryr)
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where

Total thermal resistance

___ Conduction
r,+ 50 mm
80+50=130mm=0.13m

271 (0.13 - 0.08)
In (0.13/0.08)

0.647 m?
0.08 W/(m-K)
(0.13 - 0.08)

X 1

= 0.08x0.647 = V966 K/W

R = Rl + R2
2.05x 104+ 0.966 = 0.9662 K/W

The rate of heai loss per 1 m of the pipeline is

Q =

_ AT _393-313
R = 0.9662
82.8 W/m .. Ans.

\/ Example 2.7 : A furnace is constructed with 225

mm thick of fire brick, 120 mm

of insulating brick and 225 mm of the building brick. The inside temperature s
1200 K (927 °C) and the outside temperature is 330 K (57 °C). Find the heat loss per unit

area and the temperature at the juncti

Data :

Solution :

on of the fire brick and insulating brick,

k for fire brick = 1.4 W/m-K)
k for insulating brick = 0.2 W/(m-K)
k for building brick = 0.7 W/m-K)

Let the area of heat transfer be 1 m>. Therefore, A

T, = 1200 K

=1m

F.B.

225 mm
> [
1

I.B. B.B.

225 mm
————p

P T2=330K

120 mm
——p
X

k=02 k=07

Fig. Ex. 2.7

Let T, and T, be the temperatures at the fire brick / insulating brick and the insulating

Thermal resistance of the ﬁgq‘brick

brick/building brick junctions respectively.

X

— —

~ kA

0.225
= 14x1 = 0.1607 K/'w

R,
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_ 550 - 330
~ 0.0004 + 1.2688 +2.2385 ‘
= 62.7 W/m ... Ans.

Example 2.9 : A wall of 0.5 m thickness is constructed using a material having a
thermal conductivity of 1.4 W/(m-K). The wall is insulated with a material having thermal
conductivity of 0.35 W/(m-K) so that heat loss per m? is 1500 W. The inner and outer
temperatures are 1273 K (1000 °C) and 373 K (100 °C) respectively. Calculate the thickness
of insulation required and temperature of the interface between two layers.

Solution : Let the thickness of insulation required be x, metres. .
Given: T, = 1273K, T,=373K, k, =14 W/(m-K), k, =0.35 W/(m-K), x;,=0.5m

The rate of heat transfer per unit area is given by

Q _(T-T)
A~ Xllk1+ X2/k2
(1273 — 373)

1500 = 075/1.4 + x,/0.35

Solving, we get
X, = 0.085 m=85mm

Thickness of insulation required = 85 mm ' ... Anms.
Let T' be the temperature at the interface.

S T

=
I

(1273 - T')/(0.5/1.4)

737.3 K (464.3 °C) .. Ans.
v EXample 2.10 : A cylindrical tube has inner diameter of 20 mm and outer diameter of
30 mm. Find out the rate of heat flow from tube of length 5 m if inner surface is at
373 K (100° C) and outer surface is at 308 K (35° C). Take the thermal conductivity of tube
material as 0.291 W/(m-K).

Solution : Basis : Tube of length 5 metres.

~3
[

The equation to be used for calculating the rate of heat flow through the tube (cylinder) is

k- 211, L (T~ Ty

T @n) - (A)
where, Thermal conductivity = k =0.291W/(m-K)
Length = L =5 metres

Innerradius = r;, =10 mm =0.01 m
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Outside radius = r, = 15mm =0.015m
Inside temperature = T, = 373K

Outside temperature = T, =308 K

. L1
rm = log mean radius = ( )

0.015-0.01
= W = 0.0123 m

0.01

‘Putting the values of the terms involved in Equation (A), we get

0291 x 271 (0.0123) x 5 (373 — 308)
Q= (0.015-0.01)

= 1460.8 W = 1460.8 J/s

.. Ans.

Example 2.11 : 88 mm 0.D. pipe is insulated with a 50 mm thickness of an insulation
having a mean thermal conductivity of 0.087 W/(m-K) and 30 mm thickness of an insulation,

having mean thermal conductivity of 0.064 W/(m-K). If the lemperature of the outer surface
of the pipe is 623 K (350 °C) and the temperature of the outer surface of insulation is

313 K (40 °C), calculate the heat loss per metre of pipe.

Solution : Basis : One metre length of pipe.

Pipe wall \ Layer - 2

T,=623K Layer - 1

Fig. Ex. 2.11

Refer to Fig Ex. 2.11

88
o =%5= 4 mm = 0044 m

44 +50 = 94mm = 0.094 m
44+50+30 = 124mm = 0.124 m

ey
]

S
]
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Rate of heat flow through a thick-walled cylinder of radii r, and r, is given by
ki 2n 1y, L) (T, - T))

(r;—1)
T,-T, : :
Q = —r';‘_‘_T‘ ... general equation for cylinder.
k2T, L)
Similarly, the heat loss through the éombined insulation layers is given by
_ T,-T;
Q = r,— I N r;—I, - (A)
ki 2Ry L) kK (2Tim, L)
[Q = AT/R,
Q: = AT/R,

AT] = Q1R1 and ATz = Q2R2
AT = AT, + AT,
AT = QR;+Q:R;

But Q = Q=Q
AT = Q[R;+R]
AT T, -T;
Q - R1+R2=R1+R2]
As Tl_ T3 = AT = (Tl_ Tz) + (Tz—‘ T3)
where, AT = overall temperature drop

T, = temperature at the outer surface of the wall = 623 K
T, = temperature at the outer surface of the outer insulation = 313K
k, = thermal conductivity of insulation-1 = 0.087 W/(m-K)
k, = thermal conductivity of insulation-2 = 0.064 W/(m- K)
L = Length of pipe = 1 metre |

Im, = log mean radius of insulation layer-1
L—T
fmi = 1)
I
In (fl)
_ (0.094 -0.044)

= 0.066 m

- (0.094)
1 10.044



2.22 Cor;duction

Unit bperations -1

= log mean radius of insulation layer - 2
L-0, 0.124-0.094
L (1) T 1 ’0.124)
Inic, n (0.094
Substituting the values of all terms involved in Equation (A), we get
The heat loss per metre of pipe is

I'm2

= 0.1083 m

I'm2 =

(623 - 313)
Q = ( 0.05 ) ( 0.03 )
0.087 x 2 x 0.066 x 1) * {0.064 x 21 x 0.1083
Q = 1494 W/m Ans. |

Example 2.12 : A furnace is constructed with 229 mm thick of fire brick, 115 mm |
of insulation brick and again 229 mm of building brick. The inside temperature is
1223 K (950 °C) and the temperature at the outermost wall is 323 K (50°C). The thermal
conductivities of fire brick, insulating brick and building brick are 6.05, 0.581 and |
2.33 W/(m-K). Find the heat lost per unit area and temperatures at the interfaces.

Solution :

115 m
_Jsmm

T,=1223K T,=323K

BB\\

A=

229 mm

| l229mm| FB-1B-BB
Fig. Ex. 2.12

Assume ;

Heat transfer area = A = 1 m2
229

Given :

X

thickness of fire brick = 1000 = 0229 m
: : . . 115
thickness of insulating brick = 1000 =0.115m

22
thickness of building brick = 1—00% = 0.229 m

thermal conductivity of fire brick = 6.05 W/(m-K)
thermal conductivity of insulating brick = 0.581 W/(m-K)
thermal conductivity of building brick = 2.33 W/(m-K)




Unit Operations — i 2.23 Conduction

T, = temperature at the interface between fire brick and insulating brick (K)

T, = temperature at the interface between insulating brick and building brick
(K)

T, = 1223 K, inside temperature
T, = 323K, outside temperature

Overall temperature drop is
AT = 1223-323=900K
Let us calculate Q (heat loss/m?).

The rate of heat lost per unit area is given by

I 900
Q= RARAR ™ (3 (%), (%
. kA) T lka) A
900
= 70229 0.115 0229 = 2694 W/m?

605x1 T 0581x1 T 233x1

Let us calculate Ty.
The rate of heat transfer through the fire brick layer is given by

T,-Ta
'Tox
kA
But under steady state heat transfer conditions, Q; = Q. Therefore,
1223 -T,
Qi=Q = 2694 = 0229
' 6.05 x 1
1223-T, = 102
T, = 1121 K (848°C)

Let us calculate Tg.
For steady state heat transfer,
' Tg-T, Tp—323
Q=Q =Y KA = x/A

Tg—323
233x1
Ty = 587.8K (314.8°C)

Q based on 1 m2heat transfer surface =2694 W



