
US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 1

1

History of Java
Features of Java
The Java Environment
The Java Virtual Machine (JVM)

1.1 History of Java
 Java is a general-purpose, object-oriented programming language developed by

Sun Microsystems of USA in 1991.
 Originally called Oak by James Gosling, one of the inventors of the language, Java

was designed for the development of software for consumer electronic devices like
TVs, VCRs, toasters and such other electronic machines.

 The goal had a strong impact on the development team to make the language
simple, portable and highly reliable.

 The Java team which included Patrick Naughton discovered that the existing
languages like C and C++ had limitations in terms of both reliability and portability.
However, they modeled their new language Java on C and C++ but removed a
number of features of C and C++ that were considered as sources of problems and
thus made Java a really simple, reliable, portable, and powerful language.
 1990 Sun Microsystems- decided to develop special software that could be

used to manipulate consumer electronic devices. A team of Sun Microsystems
programmers beaded by James Gosling was formed to undertake this task.

 1991 After exploring the possibility of using the most popular object-oriented
language C++. The team announced a new language named “Oak".

 1992 The team, known as Green Project team by Sun. demonstrated the
application of their new language to control a list of home appliances using a
hand-held device with a tiny touch-sensitive screen.

 1993 The World Wide Web (WWW) appeared on the Internet and transformed
the text-based Internet into a graphical-rich environment. The Green Project
team carne up with the idea of developing Web applets (tiny programs) using
the new language that could run on all types of computers connected to
Internet.

 1994 The team developed a Web browser called "HotJava" to locate and run
applet programs on Internet. HotJava demonstrated the power of the new
language, thus making it instantly popular among the Internet users.

 1995 Oak was renamed "Java", due to some legal snags. Java is just a name
and is not an acronym. Many popular companies including Netscape and
Microsoft announced their support to Java.

 1996 Java established itself not only as a leader for Internet programming but
also as a general-purpose, object-oriented programming language. Sun
releases Java Development Kit 1.0.

 1997 Sun releases Java Development Kit 1.1 (JDK 1.1).
 1998 Sun releases the Java 2 with version 1.2 of the Software Development Kit

(SDK 1.2).
 1999 Sun releases Java 2 Platform. Standard Edition (J2SE) and Enterprise

Edition (J2EE).
 2000 J2SE with SDK 1.3 was released.
 2002 J2SE with SDK 1.4 was released.
 2004 J2SE with JDK 5.0 (instead of JDK 1.5) was released. This is known as

J2SE 5.0.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 2

 The most striking feature of the language is that it is a platform-neutral language.
Java is the first programming language that is not tied to any particular hardware or
operating system. Programs developed In Java Can be executed anywhere on any
system. We can call Java as a revolutionary technology because it has brought in a
fundamental shift in how we develop and use programs. Nothing like this has
happened to the software industry before.

1.2 Features of Java
 The Inventors of Java wanted to design a language which could offer solutions to

some of the problems to encounter in modern programming. They wanted the
language to be not only reliable, portable and distributed but also simple, compact
and interactive. Sun Microsystems officially describes Java with the following
attributes:

 Java 2 Features
• Compiled and Interpreted
• Platform-Independent and Portable
• Object-Oriented
• Robust and Secure
• Distributed
• Familiar. Simple and Small
• Multithreaded and interactive
• High Performance
• Dynamic and Extensible

 Additional Features of J2SE 5.0
• Ease of Development
• Scalability and Performance
• Monitoring and Manageability
• Desktop Client
• Core XML Support
• Supplementary character support
• JDBC RowSet

 Although the above appears to be a list of buzzwords, they aptly describe the full
potential of the language. These features have made Java the first application
language of the World Wide Web. Java will also become the premier language for
general purpose stand-alone applications.

1.2.1 Compiled and Interpreted
Usually a computer language is either compiled or interpreted. Java combines both
these approaches thus making Java a two-stage system. First lava compiler
translates Source code into what is known as bytecode instructions. Bytecodes are
not machine instructions and therefore, in the second stage, Java interpreter
generates machine code that can be directly executed by the machine that is
running the Java program. We can thus say that Java is both a compiled and an
interpreted language.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 3

1.2.2 Platform-Independent and Portable
The most significant contribution of Java over other languages is its portability. Java
programs can be easily moved from one computer system to another, anywhere
and anytime. Changes and upgrades in operating systems, processors and system
resources will not force any changes in Java programs. This is the reason why Java
has become a popular language for programming on Internet which interconnects
different kinds of systems worldwide.
We can download a Java applet from a remote computer onto our local system via
Internet and execute it locally. This makes the Internet an extension of the user's
basic system providing practically unlimited number of accessible applets and
applications.
Java ensures portability in two ways. First, Java compiler generates bytecode
instructions that can be implemented on any machine. Secondly, the size of the
primitive data types is machine independent.

1.2.3 Object-Oriented
Java is a true object-oriented language. Almost everything in Java is an object. All
program code and data reside within objects and classes. Java comes with an
extensive set of classes, arranged in packages, which we can use in our programs
by inheritance. The object model in Java is simple and easy to extend.

1.2.4 Robust and Secure
Java is a robust language. It provides many safeguards to ensure reliable code. It
has strict compile time and run-time checking for data types. It is designed as a
garbage-collected language relieving the programmers virtually all memory
management problems. Java also incorporates the concept of exception handling
which captures series errors and eliminates any risk of crashing the system.
Security becomes an important issue for a language that is used for programming
on Internet. Threat of viruses and abuse of resources are everywhere. Java
systems not only verify all memory access but also ensure that no viruses are
communicated with an applet. The absence of pointers in Java ensures that
programs cannot gain access to memory locations without proper authorization.

1.2.5 Distributed
Java is designed as a distributed language for creating applications on networks. It
has the ability to share both data and programs. Java applications can open and
access remote objects on Internet as easily as they can do in a local system. This
enables multiple programmers at multiple remote locations to collaborate and work
together on a single project.

1.2.6 Simple, Small and Familiar
Java is a small and simple language. Many features of C and C++ are either
redundant or secures of unreliable code are not part of Java. For example, Java
does not use pointers, preprocessor header files, goto statement and many others.
It also eliminates operator overloading and multiple inheritance. To make the
language look familiar to the existing programmers, it was modeled on C and C++
languages. Java uses many constructs of C and C++ and therefore, Java code
“looks like a C++" code. In fact Java is simplified version of C++.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 4

1.2.7 Multithreaded and Interactive
Multithreaded means handling multiple tasks simultaneously. Java supports multithreaded
programs. This means we need not wait for the application to finish one task before
beginning other. For example, we can listen to an audio clip while typing document and at
the same time download an applet from a distant computer.
This feature greatly improves the interactive performance of Graphical applications. The
Java runtime comes with tools that support multiprocess synchronizations and construct
smoothly running interactive systems.

1.2.8 High Performance
Java performance is impressive for an interpreted language, mainly due to the use of
intermediate bytecode. According to sun, java speed is comparable to the native C/C++,
Java architecture is also designed to reduce overheads during runtime. Further, the
incorporation of multithreading enhances the overall execution speed of Java program.

1.2.9 Dynamic and Extensible
Java is dynamic language. Java is capable of dynamically linking in new class libraries,
methods, and objects. Java can also determine the type of class through a query, making it
possible to either dynamically link or abort the program, depending on the response.
Java programs support functions written in other language such as C and C++. These
functions are known as native methods. This facility enables the programmers to use the
efficient functions available in these languages. Native methods are linked dynamically at
runtime.

1.3 The Java Environment
 The java environment includes a large number of development tools and hundreds

of classes and methods.
 The development tools are part of the system known as Java Development Kit

(JDK) and the classes and methods are part of the Java Standard Library (JSL),
also known as the Application Programming Interface(API).

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 5

 The Java Development Kit comes with a collection of tools that are used for
developing and running Java program.

Java Development Tools
Tool Description
Appletviewer Enables us to run java applet (without actually using a java-

compatible browser).
Java Java interpreter, which runs applets and applications by reading

and interpreting bytecode files.
Javac The java compiler, which translates java source code to bytecode

files that the interpreter can understand.
javadoc Creates HTML format documentation from java source code files.
javah Produces header files for use with native methods.
javap Java disassemble, which enables us to convert bytecode files into

a program description.
Jdb Java debugger, which helps us to find errors in our programs.

 Application Programming Interface(API)
The java standard library (or API) includes hundreds of classes and methods
grouped into several functional packages.

Most Common Packages
Package Description
Language
Support Package

A collection of classes and methods required for implementing
basic features of java.

Utility Package A collection of classes to provide utility functions such as date and
time functions.

Input/Ouput
Package

A collection of classes required for input/output manipulation.

AWT Package The Abstract Window Toolkit package contains classes that
implements platform-independent graphical user interface.

Applet Package This includes a set of classes that allows us to create java applets.
Networking
Package

A collection of classes for communicating with other computers via
internet.

1.4 The Java Virtual Machine (JVM)

 All language compilers translate source code into machine code for a specific
computer. Java compiler also does the same thing. Then, how does java achieve
architecture neutrality?

 The answer is that the java compiler produces an intermediate code known as
bytecode for a machine that does not exist.

 This machine is called the Java Virtual Machine (JVM) and it exists only inside the
computer memory. It is a simulated computer within the computer and does all
major functions of a real computer.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 6

 The process of compiling a java program into bytecode which is also referred to as
virtual machine code.

Process of compilation (Converting source code into bytecode)

 The virtual machine code is not machine specific. The machine specific code
(known as machine code) is generated by java interpreter by acting as an
intermediary between the virtual machine and the real machine.

 Remember that the interpreter is different from different machines..

Process of interpretation (Converting bytecode into machine code)

 Above figure illustrates how java works on a typical computer. The java object
framework (Java API) acts as intermediary between the user programs and the
virtual machine which in turn acts as the intermediary between the operating
system and the java object framework.

2
Structure of a Java program
A simple Java program
Implementing a Java program

2.1 Structure of a Java program
 A java program may contain many classes of which only one class defines a main

method. Classes contain data members and methods that operate on the data
members of the class.

 Method may contain data type declarations and executable statements. To write a
java program, we first define classes and then put them together.

Documentation Section

Package Statement

Import Statement

Interface Statements

Class Definitions
Main Method Class
{

Main Method Definition
}

Java
Program

Java
Compiler

Virtual
Machine

Bytecode Java
Interpreter

Machine
Code

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 7

2.1.1 Documentation Section
 The documentation section comprises a set of comment lines giving the name of

the program, the author and other details, which the programmer would like to refer
to at a later stage.

 Comments must explain why and what id classes and how of algorithms. This
would greatly help in maintaining the program.

 In addition to the two styles of comments, java also uses a third style of comment
/**….*/ known as documentation comment. This form of comments is used for
generating documentation automatically.

2.1.2 Package Statement
 The first statement allowed in a java file is a package statement. This statement

declares a package name and informs the compiler that the classes defined here
belong o this package.

 For example: package student;
 The package statement is optional. That is, our classes do not have to be part of

package

2.1.3 Import Statement
 The next thing after a package statement (but before any class definitions) may be

a number of import statements. This is similar to the #include statement in C.
 For example: import student.test;
 This statement instructs the interpreter to load the test class contained in the

package student. Using import statements, we can have access to classes that are
part of other named package.

2.1.4 Interface Statements
 An interface is like a class but included a group of method declarations. This is also

an optional section and is used only when we wish to implement the multiple
inheritance features in the program.

2.1.5 Class Definitions
 A java program may contain multiple class definition. Classes are the primary and

essential elements of a java program. These classes are used to map the objects of
real-world problems. The number of classes used depends on the complexity of the
problem.

2.1.6 Main Method Class
 Since every Java stand-alone program requires a main method as its starting point,

this class is the essential part of a java program.
 A simple java program may contain only this part. The main method creates objects

of various classes and establishes communications between them.
 On reaching the end of main, the program terminates and the control passes back

to the operating system.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 8

2.2 A simple Java program

 The best way to learn a new language is to write a few simple example programs
and execute them. We begin with a very simple program that prints a line of text as
output.

class SampleOne
{

public static void main()
{

System.out.println(“java is better than c++”);
}

}

 Above is simplest of all java programs. It brings out some salient features of the
language. Let us therefore discuss the program line by line and understand the
unique feature that constitutes a java program.

2.2.1 Class Declaration
 The first line

Class SampleOne
Declares a class, which is an object- oriented construct.

 Java is true object- oriented language and therefore, everything must be placed
inside a class.

 Class is keyword and declares that a new class definition follows. SampleOne is a
java identifier that specifies the name of the class to be defined.

2.2.2 Opening Brace
 Every class definition in java begins with an opening brace “{“ and ends with a

matching Closing brace “}”, appearing in the last line in the example. This is similar
to C++ class constructs.

 (Note that a class definition in C++ ends with a semicolon)

2.2.3 The Main Line
 The third line

Public static void mian(String args[])
Defines a method named main.

 Conceptually, this is similar to the main() function in c/c++. Every Java application
program must include main() method. This is the starting point for the interpreter to
begin the execution of the program.

 A java application can have any number of classes but only one of them must
include a main method to initiate the execution.

 (Note that java applets will not use the main method at all)

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 9

 Public (Access Specifier) : the keyword public is an access specifier that declares
the main method as unprotected and therefore making it accessible to all other
classes. This is similar to the c++ public modifier.

 Static: next appears the keyword static, which declares this method as one that
belongs to the entire class and not a part of any objects of the class. The main must
always be declared as static since the interpreter uses this method before any
objects are created. (allows to main method call without create object)

 Void: the type modifier void state that the main method does not return any
value(but simply prints some text to the screen)

 All parameters to a method are declared inside a pair of parentheses. Here, String
args[] declares parameter named args, which contains an array of objects of the
class type String.

2.2.4 The Output Line
 The only executable statement in the program is

System.out.println(“”);
This is similar to the printf() statement of c or cout<< construct of C++.

 Since java is true object oriented language, every method must be part of an
object. The println method is a member of the out inner class, which is a static data
member of System class. This line prints specified string to the screen.

 Note the semicolon at the end of the statement. Every java statement must end a
semicolon.

2.3 Implementing a Java Program

 Implementation of a java application program involves a series of steps. They
include :
 Creating the program
 Compiling the program
 Running (executing, interpreting) the program

 Remember that, before we begin creating the program, the Java Development Kit
(JDK) must be properly installed on your system.

2.3.1 Creating The Program

 We should follow some rules before creating the java program.
1. File name and class name which contains main() method must be identical

(same and case sensitive).
2. It suggested to give first character of each word of file name and class name

should uppercase(i.e. Test, StudentDetail, SampleOne)
3. Method name’s first word should be lowercase then every word’s first character

should be uppercase(i.e. getData(), getStudentDetail())
 We can create a program using any text editor. Assume that we have entered the

following program:

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 10

Class SampleOne
{

Public static void main()
{

System.out.println(“Hello”);
}

}

 We must save this in a file called SampleOne.java ensuring that the filename
contains the class name properly.

 This file is called the source file. Note that all java source files will have the
extension java.

 Note also that if a program contains multiple classes, the file name must be the
class name of the class containing the main method.

2.3.2 Compiling The Program

 To compile the program, we must run the java compiler javac, with the name of the
source file on the command line as shown below:

Javac SampleOne.java
 If everything is OK, the javac compiler creates a file called SampleOne.class

containing the bytecode of the program. Note that the compiler automatically
names the bytecode file as <classname>.class.

2.3.3 Running The Program

 We need to use the java interpreter to run a stand-alone program. At the prompt,
type :

Java SampleOne
 Note when we compile, we should give .java extension. When we run it, we must

not give the extension because it will use .class file.
 Now, the interpreter looks for the main method in the program (SampleOne.class)

and begins execution from there. When executed, our program displays the
following :

Hello

2.3.4 Machine Netural

 The compiler converts the source code files into bytecode files. These codes are
machine-independent and therefore can be run on any machine.

 That is, a program compiled on an IBM machine will run on a Macintosh Machine.
 Java interpreter reads the bytecode files and translates them into machine code for

the specific machine on which the java program is running.
 The interpreter is therefore specially written for each type of machine.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 11

3

Tokens
Comments
Constants
Variables
Data Types

3.1 Tokens
 A Java program is basically a collection of classes. A class is defined by a set of

declaration statements and methods containing executable statements. Most
statements contain expressions, which describe the action carried out on data.
Smallest individual units in program are known as tokens. The compiler recognizes
them for building up expressions and statements.

 Java language includes 5 types of tokens:
(1) Reserved Keywords
(2) Identifiers
(3) Literals
(4) Operators
(5) Separators

3.1.1 Reserved Keywords
 Keywords are essential part of a language definition. They implement specific

features of the language. Java language has.reserved.60 keywords.
 Since keywords have specific meaning in Java, we cannot use them as names for

variables, classes, methods and so on.
 All the keywords are to be written in lower case letters. Since java is case-sensitive,

one can use these words as identifiers by changing one or more letters to
upper-case. Java Keywords are as follow:
abstract boolean break byte byvalue case
cast catch char class const continue
default do double else extends false
final finally float for future generic
goto if implements import inner instanceof
int interface long native new null
operator outer package private protected public
rest return short static super switch
synchronized this threadsafe throw throws transient
true try var void volatile while

3.1.2 Identifiers
 Identifiers are programmer-designed tokens. They are used for naming classes,

methods, variables, Objects, labels, packages and interfaces in a program. Java
identifiers should obey the following rules: -
(1) They can have alphabets, digits and the underscore and dollar sign character
(2) They must not begin with a digit
(3) Uppercase and lowercase letters are distinct
(4) They can be any length

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 12

 Identifier must be meaningful, short enough to be quickly and easily typed and long
enough to be descriptive and easily read.

3.1.3 Literals
 Literals in Java are a sequence of characters (digits, letters and other characters)

that represent constant value to be stored in variables. Java language specifies five
major types of literals.
(1) Integer literal
(2) Floating point literal
(3) Character literal
(4) String literal
(5) Boolean literal

 Each of them has a type associated with it. The type describes how the values
behave and how they are stored.

3.1.4 Operators
 An operator is a symbol that takes one or more arguments and operates on them to

produce a result. Operators are of many types and are considered in detail in later.

3.1.5 Separators
 Separators are symbols used to indicate where groups of code are divided and

arranged. They basically defined the shape and function of our code.
 Parentheses ()
 Braces {}
 Brackets []
 Semicolon ;
 Comma ,
 Period.

3.2 Comments
 Java permits both single-line comments and multi-line comments available in C++.

The single line comments begins with //. For longer comments, we can create long
multi-line comments by starting with /* and ends with */.

3.3 Constants
 Constants in Java refer to fix values that do not change during the execution of a

program.
 Integer constant refers to a series of digits. There are 3 types of integers, namely,

decimal integer (set of 0 to 9), octal integer (set of 0 to 7 and leading 0),
hexadecimal integer (set of digits preceded by OX and 0 to 9 and A to F)

 Real constants represented by numbers containing fractional parts like 17.235.
Such numbers are called real (floating point) constants.

 Single character constants contain a single character enclosed within a pair of
single quote mark. As for example

'A' '5' ‘;’ ‘ ‘

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 13

 A String constant is a sequence of characters enclosed between double quotes.
The character may be alphabets, digits, special characters and blank spaces. As
for example

"Hello Javal, "1997" "5+7" "S"
 Backslash character constants are supported by Java used in output methods. As

for example
 '\b' back space
 '\f' form feed
 '\n' new line
 '\r' character return
 '\t' horizontal space
 '\" single quote
 '\'" double quote ;.
 '\\' backslash

3.4 Variables
 A variable is an identifier that denotes storage location to store data value. Unlike

constants that remain unchanged during the execution of a program, a variable
may take different values at different times during the execution of the program.

 A variable name can be chosen by the programmer in a meaningful way so as to
reflect what it represents in the program.

 Variable may consist of alphabets, digits, and underscore and dollar character,
subject to the following conditions.
(a) They must not begin with digit.
(b) Uppercase and lowercase are distinct
(c) It should not be keyword.
(d) White space is not allowed.
(e) Variable names can be of any length.

3.5 Data Types
 Every variable in java has a data type. Data types specify the size and type of

values that can be stored.

3.5.1 Integer Types
 Integer types can hold whole numbers such as 123,-95 and 5698. The size of the

value that can be stored depends on the integer data types we choose. Java
supports four types c integer byte, short, int, long. Java does not support the
concepts of unsigned types and therefore all Java values are signed meaning they
can be positive or negative.

Type Size Min. value Max. value
Byte One byte -128 127
Short Two byte -32,768 32,767
Int Four byte -2,147,483,648 2,147,483,647
Long Eight byte -9,223,372,036,854,775,808 9,223,372,036,854,775,807

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 14

3.5.2 Floating Point Types
 Floating point numbers are treated as double-precession quantities. To force then

to be in single-precession mode, we must append f or F to the number.
 e.g) 132.45f or 125.36F

Type Size Min. value Max. value
Float Four byte 3.4e-038 3.4e+038
Double Eight byte 1.7e-308 1.7e+308

 Double precession types are used when We need greater precession in storage of
floating point numbers. All the mathematical function such as sin, cos and sqrt
return double type values.

 Floating point data types supports a special value known as Not-a-Number (NaN).
NaN used to represent the result of operations such as dividing zero by zero, where
an actual number is not produced.

3.5.3 Character Type
 In order to store character constants in memory, java provides a character data

type called char. The char type assumes a size of 2 bytes but, basically, it can hold
only a single character.

3.5.4 Boolean Types
 Boolean type is used when we want to test a particular condition during the

eexecution of the program. There are only two values that a Boolean type can take:
true or false.

 Boolean type is denoted by the keyword Boolean and uses only one bit storage.

4
Scope of Variables
Type Casting

4.1 Scope of Variables
 Java variables are actually classified into three kinds:

 Instance variables
 Class variables
 Local variables

 Instance variables are declared inside a class. Instance variables are created when
the objects are instantiated and therefore they are associated with the objects.
They take different values for each object. On other hand class variables are global
to a class and belong to the earlier set of objects that class creates. Only one
memory location is created for each class variable.

Floating Point

Float Double

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 15

 Variables declared and used inside methods are called local variables. Local
variables can also be declared inside program blocks that are defined between an
opening brace {and a closing brace}. These variables are visible to the program
only from the beginning of its program block to the end of the program block. the
area of the program where the variable is accessible is called its scope.

4.2 Type Casting
 We often encounter situations where there is a need to store a value of one type

into variable of another type. In such situations, we must cast the value to be stored
by proceeding with the name in parentheses.

type variable1 = (type) variable2;
 The process of converting one data type to another is called casting.
 e.g

int m=50;
byte n=(byte)m;
long count=(long)m;

 Cast that result in no loss of information
From To
byte short, char, int, long, float, double
short int, long, float, double
char int, long, float, double
int Iong, float, double
Iong float, double
float double

 Four integer types can be cast to and other type except Boolean. Casting into
smaller type may result in a loss. of data. Similarly, the float and double can be cast
to any other type except Boolean. Again casting Into smaller type may result in a
loss of data. Casting floating point value to integer will result in a loss of the
fractional part.

 Automatic Conversation
 For some types, it is possible to assign a value of one type to a variable of a

different type without a cast.
 Java does the conversion of the assigned value automatically. This is known as

automatic type conversion. Automatic type conversion is possible only if the
destination type has enough precession to store the source value.

 For example, int is large enough to hold a byte value. therefore,
Byte b = 50;
Int a = b;

are valid statement.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 16

5

Arithmetic Operators
Relational Operators
Logical Operators
Assignment Operators
Increment/decrement Operators
Conditional Operators
Ternary Operator & Special Operators

 Java support a rich set of operators. We have used several of them. Such as +,-,*,/.
An operator is a symbol that tells the computer to perform certain mathematical or
logical manipulations.

 Operators are used in programs to manipulate data and variables. They usually
form a part of mathematical or logical expressions.

 Java operators can be classified into a number of related categories as below:

5.1 Arithmetic Operators
 Arithmetic operators are used to construct mathematical expressions as in algebra.

Java provides all the basic arithmetic operators.
 They are listed in below table. The operators +,-,*, and / all work the same way as

they do in other languages. These can operate on any built-in numeric data type of
java. We cannot use these operators on boolean type.

 The unary minus operator, in effect, multiplies its single operand -1. Therefore, a
number preceded by a minus sign changes its sign.

Arithmetic operator
Operator Meaning
+ Addition or unary plus
- Substraction or unary minus
* Multiplication
/ Division
% Modulo division (reminder)

 Arithmetic operators are used as shown below:
A+b a-b
A*b a/b
A%b -a*b

 Here a and b may be variable or constants and are known as operands.

5.2 Relational Operators
 We often two quantities, and depending on their relation, take certain decisions. For

exa, we may compare the age of two persons, or the price of two items, and so on.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 17

 These comparisons can be done with the help of relational operators. We have
already used the symbol ‘<’ meaning ‘less than’ an expression such as

A<b or x<20
Containing a relational operator is termed as a relational expression. The value of
relational expression is either true or false. For example, if x=10 then

X<20 is true
While

20<x is false
 Java supports six relational operators in all. These operators and their meanings

are shown as below.
Relational Operator

Operator Meaning
< Is Less than
<= Is less than equal to
> Is greater than
>= Is greater than equal to
== Is equal to
!= Is not equal to

 When arithmetic expressions are used on their side of a relational operator, the
arithmetic expressions will be evaluated first and then the result compared. That
is arithmetic operator have a higher priority over relational operator.
class RelationalOperator
{

Public static void main(String args[])
{

Float a=15 of, b=20.75f, c=15.0f;
System .out.println(“a=” +a);
System .out.println(“b=” +b);
System .out.println(“c=” +c);
System .out.println(“a<b= is ” +(a<b));
System .out.println(“a>b= is ” +(a>b);
System .out.println(“a==c is ” +(a==c));
System .out.println(“a<=c is ” +(a<=c));
System .out.println(“a>=b is ” +(a>=b));
System .out.println(“b !=c is ” +(b!=c));
System .out.println(“b== a+b is ” + (b=a+c));

}
}

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 18

 The output of program would be:
A=15
B=20.75
C=15
A< b is true
a>b is false
a==c is true
a<=c is false
a>=b is false
a != c is true
b == a+c is false

 Relational expressions are used in decision statement such as, if and while to
decide the course of action of a running program .

5.3 Logical Operators
 In addition to the relational operators, java has three logical operator, which are

given in table.
Logical Operator

Operator Meaning
&& Logical AND
|| Logical OR
! Logical NOT

 The logical operators && and || are used when we want to form compound by
combining two relations. an example is:

a>b && x==10
 An expression of this kind which combines two or more relational expressions is

termed as a logical expressions or a compound relational expression. Like the
simple relational expressions, a logical expression also yields a value of true or
false, according the follow truth table.

Truth Table
Op -1 Op – 2 Value of the expression

Op-1 && op-2 Op -1 || op-2
True True True True
True False False True
False True False True
False False False False

 The logical expression given above is true only if a>b and x=10 are true. If either
(or both) of them are false the expression is false.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 19

5.4 Assignment Operators
 Assignment operators are used to assign the value of an expression to a variable .

We have seen the usual assignment operator, ‘=’. In addition, java has a set of
‘shorthand’ assignment operator which are used in the form.

v op= exp;
 Where v is a variable, exp is an expression and op is a java binary operator. The

operator op= is known as the shorthand assignment operator .
 The assignment statement

V op = exp;
Is equivalent to

V=v op(exp);
With v accessed only once. Consider example

X+= y+1;
 This is same as the statement

X= x+(y+1);
 The shorthand operator += means ‘add +1 to x’ increment x by y+1 for y=2 , the

above statement becomes
X+=3;

 And when this statement is executed, 3 is added to x. if the old value of x is, say 5,
and then the new value of x is 8. Some of the commonly used shorthand
assignment operators are illustrated in below table.

Assignment Operator
Statement with simple
Assignment operator

Statement with
Shorthand operator

A = a+1 A +=1
A=a-1 A -=1
A = a*(n+1) A *= n+1
A =a/(n+1) A /= n+1
A= a%b A %= b

 The use of shorthand assignment operator has three advantages :
1. What appears on the left hand side need not be repeated and therefore it

become easier to write .
2. The statement is more concise and easier to read.
3. Use of shorthand operator results in a more efficient code.

5.5 Increment/decrement Operators
 Java has two very useful operator not generally found in many other language.

These are the increment and decrement operators:
++ and --

 The operator ++ adds 1 to the operand while -- subtracts 1. Both are unary operator
and are used in the following form :

++m or m++;
--m or m--;
++m; is equivalent to m = m+1; (or m+=1;)
--m; is equivalent to m = m-1; (or m-=1;)

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 20

 We use the increment and decrement operators extensively in for and while loops.
 While ++m and m++ mean the same thing when they form statements

independently, they behave differently when they are used in expressions on the
right – hand side of an assignment statement. Consider the following :

M = 5;
Y=++m;

 In this case, the value of y and m would be 6. Suppose, if we rewrite the above
statement as

M = 5;
Y= m++;

 Then, the value of y would be 5 and m would be 6. A prefix operator first adds 1 to
the operand and then the result is assigned to the variable on left. On other hand,
postfix operators first assigns the value to the variable on left and then increment
the operator.

class Increment Operator
{

public static void main(String args[])
{

Int m=10 , n =20 ;
System.out.println(“ m= “ +m);
System.out.println(“ n= “ +n);
System.out.println(“ ++m= “ + ++m);
System.out.println(“ n++ = “ + n++);
System.out.println(“ m= “ +m);
System.out.println(“ n= “ +n);

}
}

 Output of program is as follows :
M=10
N=20
++m=11
N++ = 20
M=11
N=21

 Similar is the case, when we use ++(or --) in subscripted variables. That is, the
statement

A[i++] =10
 Is equivalent to

A[i] = 10
i = i+1

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 21

5.6 Conditional Operators (Ternary Operator)
 The character pair ?: is a ternary operator available in java. This operator is used

to construct conditional expressions of the form
Exp1 ? exp2 : exp3 where exp1, exp2 and exp3 are expressions.

 The operator ?: works as follows: exp1 is evaluated first. If it is nonzero (true), then
the expression Exp2 is evaluated and becomes the value of the conditional
expression.

 If exp1 is false, exp3 is evaluated and its value becomes the value of the
conditional expression. Note that only of the expressions (either exp2 or exp3) is
evaluated . for example, consider the following statements:

A = 10; B =15;
X = (a>b) ? a : b;

 In this example, x will be assigned the value of b. this can be achieved using
the if ….else statement as follows :

If (a>b)
X= a;

Else
X= b;

5.7 Special Operators

 Java supports some special operator of interest such as instanceof operator
and member selection operator(.) .

 Instanceof operator
 The instanceof operator is an object operator and returns true if the object on the

left-hand side is an instance of the class given on the right-hand side. This operator
allows us to determine whether the object belongs to a particular class or not.

 Example:
Person instanceof student

Is true if the object person belongs to the class student; otherwise it is false.

 Dot operator
 The operator (.) is used to access the instance variables and methods of class

objects. Example:
Person1.age //reference to the variable age
Person1.salary() //reference to the method salary()

It is also used to access classes and sub- packages from a package.

6

Decision making: if statement
if…else statement
Nesting of if…else
The else if ladder
Switch statement

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 22

 The if statement is a powerful decision making statement and is used to control the
flow of execution of statement. It is basically a two-way decision statement and is
used in conjunction with an expression. It takes the following from:

If(test expression)
 It allows the computer to evaluate the expression first and then, depending on

whether the value of the expression (relation or condition) is ‘true’ or ‘false’, it
transfers the control to a particular statement, this point of program has to paths to
follow, one for the true condition and the other for the false condition as shown
below:

Entry

False

True
 Example:

If(bank balance is zero)
Borrow money

If(room is dark)
Put on lights

6.1 Simple if statement
 The general form of a simple if statement is

If(test expression)
{

Statement-block
}

Statement-x;
 The ‘statement-block’ may be a single statement or a group of statements. If the

test expression is true, the statement-block will be executed; otherwise the
statement-block will be skipped and the execution will jump to the statement-x.

 It should be remembered that when the condition is true both the statement-bock
and the statement-x are executed in sequence. This is illustrated below:

Test
express-

ion ?

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 23

Entry

True

False

False

Next statement
 Example:

Int a=10;
int b=10;
If(a==b)
{ System.out.println(“both are same”); }
String str1=’a’;
String str2=’a’;
If(str1 equals(str2))
{ System.out.println(“both are same:”); }

6.2 if….else statement
 The if……else statement is an extension of the simple if statement. The general

form is:
 Syntax:

If(test expression)
{

True-block statement(s)
}
Else
{

False-block statement(s)
}
Statement-x

 If the test expression is true, then the true-block statement(s) immediately following
the if statement, are executed; otherwise, the false-block statement(s) are
executed. In either case, either true-block or false-block will be executed, not both.

Test
expr-?

Statement-block

Statement-x

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 24

This is illustrated in bellow. In both cases, the control is transferred subsequently to
the statement-x.

Entry

True False

 Example:
String str1=’a’;
String str2=’a’;
If(str1 equals(str2))
{ System.out.println(“both are same”); }
Else
{ System.out.println(“both are not same”); }

6.3 Nesting of if….else statement
 When a series of decision are involved, we may have to use more than one

if…..else statement in nested form as follows:

if (test condition1)
{

If(test condition2)
{

Statement-1;
}
Else
{

Statement-2;
}

}
Else

{
Statement-3;

}
Statement-x;

test
expression

?

False-block
statement

Statement-x

True-bock
statements

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 25

 The logic of execution is illustrated in above fig. the condition-1 is false, the
statement-3 will be executed; otherwise it continues to perform the second test. If
the condition-2 true, the statement-1 will be evaluated; otherwise the statement-2
will be evaluated and then the control is transferred to the statement –x.

 Example:
Int a=325,b=712,c=478;
System.out.println(“largest value is :”);
If(a>b)
{ If(a>c)

{
System.out.println(“a”);

}
Else
{

System.out.println(“c”);
}

}
else

{ If(c>b)
{ System.out.println(c); }
else

{ System.out.println(b); }
}

 A commercial bank has introduced an incentive policy of giving bonus to all its
deposit holder. The policy is as follows: a bonus of 2 per cent of the balance held
on 31st December is given to every one, than Rs 5000. This logic can be coded as
follows:

Test co
ndition

Test co
ndition

Entry

Statement-1
Condition-1

Statement-2
Condition-1

Statement-3
Condition-1

Statement-x
Condition-1

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 26

6.4 The if….else ladder
 There is another way of putting ifs together when multipath decisions are involved.

A multipath decision is a chain of ifs in the statement which the statement
associated with each else is an if. It takes the following general from:

If(condition1)
{

Statement-1;
}
Else if(condition2)
{

Statement-2;
}
Else if(condition3)
{

Statement-3;
}
Else if(condition n)
{

Statement-n;
}
Else
{

Default-statement;

Statement-x;
}

 The construct is known as the else if ladder. The condition are evaluated from the
top (of the ladder), downwards. As soon as the true condition is found, the
statement associated with is executed and the control is transferred to the
statement-x (skipping the rest of the ladder). When all the n condition become false
then the final else containing the default-statement will be executed above figure
shows the logic of execution of else if ladder statements.

 Example:
Int a=10,b=51;
If(a>b)
{ System.out.println(“a is bigger”);
}
Else if(b>a)
{ System.out.println(“b is bigger”);
}
Else
{ System.out.println(“both are same”);
}

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 27

6.5 Switch statement
 We have seen that when one of the many alternatives is to be selected, we can

design a program using if statement to control the selection. However, the
complexity of such a program increases dramatically when the number of
alternatives increases. The program becomes difficult to read and follow. At a
times, it may confuse even the designer of the program. Fortunately, java has a
built-in multiway decision statement known as switch. The switch statement tests
the value of a given variable (or expression) against a list of case value and when a
match is found, a block of statement associated with that case is executed. The
general form of the switch statement is a shown below:

Next Statement

Statement 3

Condition
1

Condition-2

Statement-1

Condition-3

Statement-2

Default Statement

Statement-x

Entry

FalseTrue

FalseTrue

FalseTrue

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 28

Switch(expression)
{

Case value-1:
Block-1
Break;

Case value-2:
Block-2
Break;

…………………..
…………………..
Default:

Default-block
Break;

}
Statement-x;

 The selection process of switch statement is illustrated in the flowchart show in
below:

Entry

. . . expression=value-1

. . .

. . . expression=value-2

. . .
(No match) default

7

While
do…while
for & for each loop
jumps in loops

7.1 The While Statement
 The basic format of the while statement is

Initialization;
while (test condition)
{ Body of the loop }

Switch
statement

Block-1

Block-2

Default-block

Statement-

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 29

 The while is an entry-controlled ~op statement. The test condition is evaluated and
if the condition is true, then the body of the loop is executed. After execution of the
body, the test condition is once again evaluated and if it is true, the body is
executed once again. This process of repeated execution of the body continues
until the test condition finally becomes false and the control is transferred out of the
loop. On exit, the program continues with the statement immediately after the body
of the loop.

 The body of the loop may have one or more statements. The braces are needed
only if the body contains two or more statements.

 Consider the following code segment:
sum = 0;
n = 1;
whife (n<= 10)
(
sum =sum +n *n;
n = n + 1;
}
System.out.println ("Sum = " + sum);

 The body of the loop is executed 10 times for n = 1,2,…..,10 each time adding the
square of the value of n, which is incremented inside the loop. The test condition
may also be written as n < 11 the result would be the same.

7.2 THE DO STATEMENT
 The while loop construct that the condition will be tested first and then if condition is

true will execute all the statements after while. On some occasions it might be
necessary to execute the body of the loop before the rest performed. Such situation
can be handled with the help of the do statement. This takes the form:

Initialization;
Do
{

Body of the loop;
}
While(test condition)

 On reaching the do statement, the program proceeds to evaluate the body if the
loop first. At the end of the loop, the test condition in the while statement is
evaluated. If the condition is true, the program continues to evaluate the body of the
loop once again. This process continues as long as the condition is true when
condition is false, the loop will be terminated and the control goes to the statement
that appears immediately after the while statement.

 Since test condition is evaluated at the bottom of the loop, the do ... while construct
provides and exit-controlled loop and therefore the body of the loop are always
executed at the least once.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 30

 Consider an example:
I=1;
Sum=0;

Do
{

Sum=sum+I;
I=i+2;

}
While(sum<40);

 The loop will be executed as long as the condition is true.

7.3 THE FOR STATEMENT
 The for loop is another entry-controlled loop that provides a more concise loop

control structure. The general for is:
for (initialization; test condition; increment)
{
body of the loop;
}

 The execution of the for statement is as follows:
(1) Initialization of the control variables is done first, using assignment statements
such as i=1 and count=0. The variable i and count are known as loop control
variables.
(2) The value of the control variable is tested using the test condition. The test
condition is a relational expression, such as i<10 that determines when the loop will
exit. If the condition is true, the body of the loop is executed; otherwise the loop is
terminated and the execution continues with the statement that immediately follows
the loop.
(3) When the body of the loop is executed, the control is transfer back to the "for"
statement after evaluating the last statement in the loop. Now the control statement
is incremented using an assignment statement such as i = i + 1 and the new (alue
of control variable is again tested to see whether it satisfies the loop condition. If
the condition is satisfied, the body of the loop is again executed. The process
continues till the value of control variable fails to satisfy the test condition.

 Consider the following example:
for (x = 0 ; x < = 9 ; x = x + 1)
{

System.out.print(x);
}

 The for loop is executed 10 times and prints the digits 0 to 9 in one line. The three
sections enclosed within parentheses must be separated by semicolons. Note that
there is no semicolon at the end of the increment section.

 The for statement allows for negative Increments. For example,
for (x = 9 ; x <= 0; x = x - 1)

System.out.println(x);

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 31

 The for loop is execute 10 times and prints the digits 9 to 0 in one line. Note that
braces are optional when the body of the loop contains only one statement.

 Since the conditional test is always performed at the beginning of the loop, the
body of the loop may not be executed at all, if the condition fails at first time. For
example,

for(x=9; x< 9; x=x+1)
{

System.out.print(x);
}

 will never be executed because the test condition fails at the very beginning itself.

Additional features of FOR LOOP:
 The "for loop" has several capabilities that are not found in other constructs. For

example more than one variable can be initialized at a time in the “for" statement.
p = 1;
for (n = 0; n < 17; n ++)

can be rewritten as
for(n =0; p = 1; n < 17; n ++)

the initialization section has two parts p = 1 and n = 0 separated by comma.

 Like initialization section, the increment section, the increment section may also
have more than one part. For example,

for (n = 0, p = 1; n < 17 ; n ++, m = m + 1)
is valid. The multiple arguments in the increment section are separated by commas.

 The third feature is that the test condition may have any compound relation and the
testing need not be limited only to the loop control variable.

sum = 0;
for (n = 0; n < 17 && sum < 100 ; n++)
{

}
 The loop uses a compound test condition with the control variable n and external

variable sum. The loop is executed as long as both the conditions n < 17 and sum
< 100 are true.

 It is also permissible to use expressions In the assignment statements of
initialization and Increment sections. For example, a statement of the type

for (x = (m+n)/2; x > 0; x = x/2) is valid.
 Also one can omit one of the sections, if required.

m = 5;
for (; m l= 100;)
{

System.out.println(m);
M=m+5; }

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 32

Jumps in Loop
 Loop performs a set of operations repeatedly until the control variable fails to satisfy

the test condition. The number of times a loop is repeated is decided in advance
and the test condition is written to achieve this. Sometimes when executing a loop it
becomes desirable to skip a part of the loop or to leave the loop as soon as certain
condition occurs. Java permits a jump from one statement to the end or beginning
of a loops as well as a jump out of a loop.

 Jumping out of a loop
 An early exit from a loop can be accomplished by using the break statement. This

statement can also be used within while, do or for loop.
 When break statement encountered inside a loop, the loop is immediately exited

and the program continues with the statement immediately following the loop.
When the loops are nested, the break would only exit from the loop containing it.
That is, the break will exit only a single loop.

 The format of break statement is as follows:
break;

 Skipping a part of loop:
 During the loop operations, it may be necessary to skip a part of loop under certain

conditions. Like break statement, Java supports another similar statement called
the continue statement.

 However, unlike break which causes the loop to be terminated, the continue, as the
name implies, causes the loop to be continues with the next iteration after skipping
any statements in between. The continue statement tells the compiler, “SKIP THE
FOLLOWING STATEMENTS AND CONTINUE WITH THE NEXT ITERATON". The
format of continue statement is as follows:

continue;
 In the case of WHILE loop, continue causes the control to go directly to the test

condition and then to continue the iteration process. In the case of for loop, the
increment section of the loop is executed before the test condition is evaluated.

8 Array

 An array is a liked type variables that are referred by a common name.
 A specific element in an array is accessed by its index.

8.1 One-Dimensional array
 A one-dimensional array is, essentially, a list of like-typed variables. To create an

array, you first must create an array variable of the desired type. The general form
of a one-dimensional array declaration is

 type var-name[];

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 33

 Here, type declares the base type of the array. The base type determines the data
type of each element that comprises the array. Thus, the base type for the array
determines what type of data the array will hold. For example, the following
declares an array named month_days with the type “array of int”.

 You must allocate one using new and assign it to month_days. new is a special
operator that allocates memory. You will look more closely at new in a later chapter,
but you need to use it now to allocate memory for arrays. The general form of new
as it applies to one-dimensional arrays appears as follows:

 array-var = new type[size];
 Here, type specifies the type of data being allocated, size specifies the number of

elements in the array, and array-var is the array variable that is linked to the array.
That is, to use new to allocate an array, you must specify the type and number of
elements to allocate. The elements in the array allocated by new will automatically
be initialized to zero.

 This example allocates a 12-element array of integers and links them to
month_days.

month_days = new int[12];
class Array {
public static void main(String args[]) {

int month_days[];
month_days = new int[12];
month_days[0] = 31;
month_days[1] = 28;
month_days[2] = 31;
month_days[3] = 30;
month_days[4] = 31;
month_days[5] = 30;
month_days[6] = 31;
month_days[7] = 31;
month_days[8] = 30;
month_days[9] = 31;
month_days[10] = 30;
month_days[11] = 31;
System.out.println("April has " + month_days[3] + " days.");

}
}

 It is possible to combine the declaration of the array variable with the allocation of
 the array itself, as shown here:

int month_days[] = new int[12];
 Arrays can be initialized when they are declared. The process is much the same as
 that used to initialize the simple types. An array initializer is a list of comma-

separated expressions surrounded by curly braces. The commas separate the
values of the array elements.

US04CBA02 UNIT-I OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 34

 The array will automatically be created large enough to hold the number of
elements you specify in the array initializer. There is no need to use new.

 For Example,
class Average {

public static void main(String args[]) {
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;
int i;
for(i=0; i<5; i++)
{

result = result + nums[i];
System.out.println("Average is " + result / 5);

}
}
}

8.2 Multidimensional Arrays(Two Dimensional Arrays)

 In Java, multidimensional arrays are actually arrays of arrays. To declare a
multidimensional array variable, specify each additional index using another set of
square brackets. For example, the following declares a two-dimensional array
variable called twoD.

int twoD[][] = new int[4][5];
 This allocates a 4 by 5 array and assigns it to twoD. Internally this matrix is

implemented as an array of arrays of int.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 1

1 Defining a class, members of a class: variables and methods, creating objects,
constructors, accessing class members

1.1 Defining a Class:
As stated earlier a class is a user-defined data type with a template that serves to
define its properties. Once the class type has been defined, we can create “variables” of
that using declaration that are similar to the basic type declaration . In java , these
variables are terms as instances of classes, which are the actual objects. The basic form
of a class definition is:

class classname [extends superclassname] [implements Interfacename]
{

[fields declaration ;]
[methods declaration ;]

}
Everything inside the square brackets is optional. This means that the following would
be a valid class definition:

class Empty
{
}

Because the body is empty, this class dose not contains any properties and
therefore cannot do anything. We can, however compiler it and even create objects using
it . C++ programmers may note that there is no semicolon after closing brace.

classname and superclassname are any valid java identifiers. The keyword
extends indicates that the properties of the superclassname class are extended to the
classname class. This concept is known as inheritance.

1.2 FIELDS DECLARATION:
Data is encapsulated in a class by placing data fields inside the body of the class

definition. These variables are called instance variables because they are created
whenever an object of the class is instantiated. We can declare the instance variables
exactly the same way as we declare local variables. Example:

class Rectangle
{

int length;
int width;

}
The class Rectangle contains two integer type instance variables. It is allowed to declare
them in one line as.

int length, width;
Remember these variables are only declared and therefore no storage space has been
created in the memory. Instance variables are also known as member variables.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 2

1.3 METHODS DECLARATION:
A class with only data fields (and without methods that operator on that data)

has no life. The objects created by such a class cannot respond to any messages. We
must therefore add methods that are necessary for manipulating the data contained in the
class. Methods are declared inside the body of the class but immediately after the
declaration of instance variables. The general form of a methods declaration is

type methodname(parameter-list)
{

Method-body;
}

Methods declarations have four basic parts:
1) The name of the method(methodname)
2) The type of the value the method returns(type)
3) A list of parameters(parameter-list)
4) The body of the method.

The type specifies the type of value the methods would return. This could be a simple data
type such as int as well as any class type. It could even be void type, if the method does
not returns any value. The methodname is a valid identifier. The parameter list is always
enclosed in parentheses. This list contains variables names and types of all the values we
want to give to the methods as input. The variables in the list are separated by commas.
In the case where no input data are required, the declaration must retain the empty
parentheses. Examples:

(int m, float x , float y) // three parameters
() // Empty list

The body actually describes the operations to be performed on the data. Let us consider
the rectangle class again and add a methods getdata() to it.

class Rectangle
{

int length;
int width;
void getData (int x, int y) // methods declaration {
{

length=x;
width=y;

}
}

Note that the method has a return type of void because it does not return any value. We
pass two integer values to the method which are then assigned to the instance variables
length and width. The getdata method is basically added to provide values to the
instances variables. Notice that we are able to use directly length and width inside the
method.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 3

Let us some more properties to the class. Assume that we want to computer the area of
the rectangle defined by the class. This can be done as follows:

class Rectangle
{

int length,width; // combined declaration
void getdata(intx,int y)
{

length =x;
width =y;

}
int rectArea() // declaration of another method
{

int area= length *width;
return(area);

}
}

The new method rectArea() computes area of the rectangle and returns the result. Since
the result would be an integer, the return type of the method has been specified as int.
also note that the parameter list is empty, remember that while the declaration of instance
variable(and also local variables) can be combined as

int length, width;
The parameter list used in the method header should always be declared independently
separated by commas, that is,

void getData (int x, y) //incorrect is illegal.

1.4 CREATING OBJECTS:
As pointed out earlier, an object in java is essentially a block of memory that contains
space to store all the instance variables. Creating an object is also referred to as
instantiating an object.
Objects in java are created using new operator. The new operator creates an object of the
specified class and returns a reference to that object. Here is an example of creating an
object of type Rectangle.

Rectangle rect1; //declare the object
rect1=new Rectangle(); //instance the object

The first statement declared a variable to hold the object references and the second one
actually assigns the objects references to the variables. The variable rect1 is now an
object of Rectangle class.

Both statements can be combined into one statement as below:
Rectangle rect1 = new Rectangle();

The method Rectangle() is the default constructor of the class. We can create any
number of objects of Rectangle. Example:

Rectangle rect1= new Rectangle();

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 4

Rectangle rect2= new Rectangle();
It is important to understand that each object has its own copy of the instance variables of

its class. This means that any changes to the variables of one object have no effect on the
variables of another. It is also possible to create two or more references to the same
object.

1.5 ACCESSING CLASS MEMBERS:
NOW we have created objects each containing its own set of variable, we should assign

values to these variable in order to use them in our program. Remember all variable must
be assigned values before they are used. Since we are outside the class., we cannot
access the instance variable and the methods directly. To this, we used the concerned
object and the dot operator a shown below:

Objectname.variablename=value;
Objectname.methodname(parameter-list);

Here objectname is the name of the object,variablename is the name of the instances
variable inside the object that we wish to access, methodname is the method that we
wish to call, and paremeter-list is a comma separated list of “actual values” that must
match in type and number with the parameter list of the methodname declared in the
class. The instances variable of the Rectangle class may be accessed and assigned the
values as follow:
rect1.length=15;
rect1.width=10;
rect2.length=20;
rect2.width=12;

note that the two objects rect1 and rect2 store different value as shown below:

rect1.length=15; rect2.length=20;
rect1.width=10; rect2.width=12;

This is one way of assigning values to the variables in the objects. Another way and more
convenient way of assigning values to the instance variable is to use a method that is
declared inside the class.

In our case, the method getData can be used to do this work.we can call the getData
method on any Rectangle object to set the values of both length, width. here is code
segment to achieve this.

Rectangle rect1=new Rectangle();
rect1.getdata(15,10);

This code creates rect1 object and then passes in the values 15 and 10 for x and y
parameter of the method gatdata. This method then assigning these values to length and
width variables respectively . for the sake of convenience, the method is again shown
below:

void getData(int x, int y)

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 5

{
length=x;
width=y;

}
Now that the object rect1 contains values for its variables , we can compute the area of
the rectangle represented by rect1. This again can be done in two ways.

1) The first approach is to access the instance variables using the dot operator and
compute the area. that is,
int area1=rect1.length * rect1.width;

2) The second approach is to call methodrectarea declared inside the class. That is ,
int area1=rect1.rectArea();

1.6 CONSTRUCTORS

We know that all objects that are created must be given initial values. We have done this
earlier using two approaches. The first approach uses the dot operator to access the
instance variables and then assigns values to them individually. It can be a tedious
approach to initialize all the variables of all the objects.

The second approach takes the help of a method like getData to initialize each object
individually using statements like,

rect1.getData(10,15);

It would be simpler and more concise to initialize an object when it is first created. Java
supports a special type of method, called a constructor, that enables an object to initialize
itself when it is created.
Constructors have the same name as the class itself. Secondly, they do not specify a
return type, not even void. This is because they return the instance of the class itself.
Let us consider our Rectangle class again.

We can now replace the getData method by a constructor method as shown below :
class Rectangle
{

int length;
int width;
Rectangle (int x, int y) // Constructor method
{

length = x;
width = y;

}
intrectArea()
{

return (length * width);

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 6

}
}

Program illustrates the use of a constructor method to initialize an object at the time of its
creation.

Program Application of constructors

class Rectangle{
int length, width ;
Rectangle (int x, int y) // Defining constructor
{

length = x;
width = y;

}
intrectArea() {

return (length * width) ;
}

}
class RectangleArea{

public static void main (String args[]) {
Rectangle rect1 = new Rectangle(15, 10); //Calling constructor
int area1 = rect1.rectArea();
System.out.println(“Area1 = ”+ area1);

}
}

Output of Program
Area1 = 150

The constructor Rectangle defined in Program 8.2 can also be termed as parameterized
constructor. This is because, at the time of object instantiation, the constructor is explicitly
invoked by passing certain arguments. But, what if we want the constructor to
automatically initialize the object variables with some default values at the time of object
instantiation. The default constructor is used in such a situation.
It is declared in the same manner as a parameterized constructor with one characteristic
difference that it does not take in any parametric values.

Program shows the use of default constructor :
class perimeter{

int length;
int width;
perimeter() {

length = 0;
breadth = 0;

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 7

}
// parameterized constructor
perimeter(int x, int y)
{

length = x;
breadth = y;

}
void cal_perimeter()
{

intperi;
peri=2*(length + breadth);
System.out.println(“\nThe perimeter of the rectangle is :”+peri);

}
}
class Ex_default_c{

public static void main(String args[]) {
perimeter p1=new perimeter(); // calling default constructor
perimeter p2=new perimeter(5, 10); //calling parameterized constructor
p1.cal_perimeter();
p2.cal_perimeter();

}
}

Output of Program 8.3 :
The Perimeter of the rectangle is : 0
The Perimeter of the rectangle is : 30

2 Static members v/s instance members

We have seen that a class basically contains two sections. One declares variables and
the other declares methods. These variables and methods are called instance variables
and instance methods. This is because every time the class is instantiated, a new copy of
each of them is created. They are accessed using the objects (with dot operator).

Let us assume that we want to define a member that is common to all the objects and
accessed without using a particular object. That is, the member belongs to the class as a
whole rather than the objects created from the class. Such members can be defined as
follows:

static int count;
static int max (int x, int y);

The members that are declared static as shown above are called static members. Since
these members are associated with the class itself rather than individual objects, the static
variables and static methods are often referred to as class variables and class methods in
order to distinguish them from their counterparts, instance variables and instance
methods.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 8

Static variables are used when we want to have a variable common to all instances of a
class. One of the most common examples is to have a variable that could keep a count of
how many objects of a class have been created. Remember, Java creates only one copy
for a static variable which can be used even if the class is never actually instantiated.

Like static variables, static methods can be called without using the objects. They are also
available for use by other classes. Methods that are of general utility but do not directly
affect an instance of that class are usually declared as class methods. Java class libraries
contain a large number of class methods. For example, the Math class of Java library
defines many static methods to perform math operations that can be used in any program.
We have used earlier statements of the types.

float x = Math.sqrt(25.0);

The method sqrt() is a class method (or static method) defined in Math class.

We can define our own static methods as shown in Program 8.4.

Program : Defining and using static members
class Mathoperation
{

static float mul (float x, float y)
{

return x*y;
}
static float divide (float x, float y)
{

return x/y;
}

}

class MathApplication
{ public void static main (string args [])

{
float a = Mathoperation.mul(4.0,5.0);
float b = Mathoperation.divide(a,2.0);
System.out.println(“b = “+ b);

} }
Output of Program 8.4 :

b = 10.0
Note that the static methods are called using class names. In fact, no objects have been
created for use. Static methods have several restrictions :

1. They can only call other static methods.
2. They can only access static data.
3. They cannot refer to this or super in way.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 9

3 Introduction to inheritance, super keyword

Reusability is yet another aspect of OOP paradigm. It is always nice if we could reuse
something that already exist rather than creating the same all over again. java supports
this concept. Java classes can be reused in several ways. This is basically done by
creating new classes, reusing the properties of existing ones. The mechanism of deriving
a new class from an old one is called inheritance. The old class is known as the base
class or super class or parent class and the new one is called the subclass or derived
class or child class. The inheritance allows subclasses to inherit all the variables and
methods of their parent classes. Inheritance may take different forms:

 Single inheritance (only one super class)
 Multiple inheritance (several super classes)
 Hierarchical inheritance (one super class, many subclasses)
 Multilevel inheritance (Derived from a derived class)

Java does not directly implement multiple inheritance. However, this concept is
implemented using a secondary inheritance path in the form of interfaces.

Defining a Subclass
A subclass is defined as follows :

class subclassname extends superclassname
{

variables declaration;
methods declarartion;

}

The keyword extends signifies that the properties of the superclassname are extended to
the subclassname. The subclass will now contain its own variables and methods as well
those of the superclass. This kind of situation occurs when we want to add some more
properties to an existing class without actually modifying it. Program 8.6 illustrates the
concept of single inheritance.
Program Application of single inheritance
class Room
{

int length;
int width;
Room (int x, int y)
{

length = x;
breadth = y;

}
int area()
{

return (length * breadth);
}

}

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 10

class BedRoom extends Room //Inheriting Room
{

int height;
BedRoom (int x, int y, int z)
{

super (x, y) //pass values to superclass
height = z;

}
int volume ()
{

return (length * breadth * height);
}

}
class InherTest
{

public static void main (String args [])
{

BedRoom room1 = new BedRoom (14, 12, 10);
int area1 = room1.area(); //superclass method
int volume1 = room1.volume (); //subclass method
System.out.println(“Area1 = “+ area1);
System.out.println(“Volume1 = “+ volume1);

}
}
The output of Program 8.6 is :

Area1 = 168
Volume1 = 1680

The program defines a class Room and extends it to another class BedRoom. Note that
the class BedRoom defines its own data members and methods. The subclass BedRoom
now includes three instance variables, namely, length, bredthand height and two
methods, area and volume.
The constructor in the derived class uses the super keyword to pass values that are
required by the base constructor. The statement

BedRoom room1 = new BedRoom (14, 12, 10);

calls first the BedRoom constructor method, which in turn calls the Room constructor
method by using the super keyword.
Finally, the object room1 of the subclass BedRoom calls the method area defined in the
super class as well as the method volume defined in the subclass itself.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 11

Subclass Constructor
A subclass constructor is used to construct the instance variables of both subclass and
the superclass. The subclass constructor uses the keyword super to invoke the
constructor method of the superclass. The keyword super is used subject to the following
conditions.

 Super may only be used within a subclass constructor method
 The call to superclass constructor must appear as the first statement within the

subclass constructor
 The parameter in the super call must match the order and type of the instance

variable declared in the superclass.

Program illustrated the use of super() method for passing parameter to a superclass.
class Super
{

int x;
Super (int x)
{

this.x = x;
}
void display() //method defined
{

System.out.println(“Super x = “+ x);
}

}
class Sub extends Super
{

int y;
Sub (int x, int y)
{

Super (x);
this.y = y;

}
void display() //method defined again
{

System.out.println(“Super x = “ + x);
System.out.println(“Sub y = “ + y);

}
}
class OverrideTest
{

public static void main (String args [])
{

String cname;
String tname;
Cname=br.readLine();

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 12

Sub s1 = new Sub (100, 200);
s1.display();

}
}

The output of Program:
Super x = 100
Sub y = 200

Multilevel Inheritance
A common requirement in object-oriented programming is the use of a derived class as a
super class. Java supports this concept and uses it extensively in building its class library.
This concept allows us to build chain of classes.
The class A serves as a base class for the derived class B which in turn serves as a base
class for the derived class C. The chain ABC is known as inheritance path.

A derived class with multilevel base classes is declared as follows.
class A
{

.

.
}
class B extends A // First level
{

.

.
}
class C extends B //Second level
{

.

.
}

Hierarchical Inheritance
Another interesting application of inheritance is to use it as a support to the hierarchical
design of a program. Many programming problems can be cast into a hierarchy where
certain features of one level are shared by many others below the level. A hierarchical
classification of accounts in a commercial bank. This is possible because all the accounts
possess certain common features.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 13

class A
{

.

.
}
class B extends A
{

.

.
}
class C extends A {

.

.
}

4 Interfaces: introduction

Introduction: Java does not support multiple inheritance, that is, classes in java cannot
have more than one super class. However, the designers of java could not overlook the
importance of multiple inheritance. Java provides an alternate approach known as
Interfaces to support the concept of multiple inheritance.

Defining Interfaces:
An interface is basically a kind of class. It contains methods and variables but with a major
difference. The difference is that interfaces define only abstract methods and final fields.
This means that interfaces donot specify any code to implement these methods and data
fields contain only constants. Therefore, it is the responsibility of the class that implements
an interface to define the code for implementation of these methods.

Syntax for defining interface:

interface Interfacename
{

variables declaration;
methods declaration;

}
Here, interface is the keyword and Interfacename is any valid java variable.
Variables are declared as follows:

static final type variablename = value;

Note that all variables are declared as constants.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 14

Methods declaration will contain only a list of methods without any body statements.

return-type methodname1(parameter_list);

Example:
interface item
{

static final int code = 1001;
static final String name = “Fan”;
void display();

}

Implementing interfaces
Interfaces are used as “superclasses” whose properties are inherited by classes. It is
therefore necessary to create a class that inherits a given interface.

Syntax:
class classname implements interfacename
{

//body of classname
}

More general form of implementation is like this:
class classname extends superclass implements interface1, interface2,…..
{

//body of classname
}

5 Final variables, methods and classes, abstract methods and classes

FINAL VARIABLES AND METHODS
All methods and variables can be overridden by default in subclasses. If we wish to
prevent the subclasses from overriding the members of the superclass, we can declare
them as final using the keyword final as a modifier. Example :

final int SIZE = 100;
final void showstatus() {}

Making a method final ensures that the functionality defined in this method will never be
altered in any way. Similarly, the value of a final variable can never be changed. Final
variables, behave like class variables and they do not take any space on individual objects
of the class.

FINAL CLASSES
Sometimes we may like to prevent a class being further subclasses for security reasons. A
class that cannot be subclassed is called a final class. This is achieved in Java using the
keyword final as follows :

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 15

final class Aclass { }
finalclass Bclass extends Someclass { }

Any attempt to inherit these classes will cause an error and the compiler will not allow it.
Declare a class final prevents any unwanted extensions to the class. It also allows the
compiler to perform some optimisations when a method of a finalclass is invoked.

ABSTRACT METHODS AND CLASSES
We have seen that by making a method final we ensure that the method is not redefined
in a subclass. That is, the method can never be subclassed. Java allows us to do
something that is exactly opposite to this. That is, we can indicate that a method must
always be redefined in a subclass, thus making overriding compulsory. This is done using
the modifier keyword abstract in the method definition. Example :

abstractclass Shape
{

.

.
abstract void draw ();
.
.

}
When a class contains one or more abstract methods, it should also be declared abstract
as shown in the example above.

While using abstract classes, we must satisfy the following conditions :
 We cannot use abstract classes to instantiate objects directly. For example,

Shape s = new Shape ()
is illegal because shape is an abstract class.

 The abstract methods of an abstract class must be defined in its subclass.
 We cannot abstract constructors or abstract static method.

6 Introduction to method overloading and overriding

METHODS OVERLOADING

In Java, it is possible to create method that have the same name, but different parameter
lists and different definitions. This is called method overloading. Method overloading is
used when objects are required to perform similar tasks but using different input
parameter. When we call a method in an object, Java matches up the method name first
and then the number and type of parameters to decide which one of the definitions to
execute. This process is known as polymorphism.

To create an overloaded method, all we have to do is to provide several different method
definitions in the class, all with the same name, but with different parameter lists. The
difference may either be in the number or type of arguments. That is, each parameter list
should be unique. Note that the method’s return type does not play any role in this. Here is
an example of creating an overloaded method.

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 16

class Room{
float length;
float breadth;
Room (float x, float y) //constructor1
{

length = x;
breadth = y;

}
Room (float x) //constructor2
{

length = breadth = x;
}
int area () {

return (length * breadth);
}

}

Here, we are overloading the constructor method Room(). An object representing a
rectangular room will be created as

Room room1 = new Room(25.0 , 15.0) ; //using constructor1
On the other hand, if the room is square, then we may create the corresponding object as

Room room2 = new Room(20.0) ; //using constructor2

OVERRIDING METHODS
We have seen that a method defined in a super class is inherited by its subclass and is
used by the objects created by the subclass. Method inheritance enables us to define and
use methods repeatedly in the subclasses without having to define the methods again in
subclass.
However, there may be occasions when we want an object to respond to the same
method but have different behaviour when that method is called. That means, we should
override the method defined in the superclass. This is possible by defining a method in the
subclass that has the same name, same arguments and same return type as a method in
the superclass. Then, when that method is called, the method defined in the subclass is
invoked and executed instead of the one in the superclass. This is known as overriding.
Program 8.7 illustrates the concept of overriding. The methoddisplay() is overridden.

Program Illustration of method overriding
class Super
{

int x;
Super (int x)
{

this.x = x;
}

US04CBA23 UNIT-II OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 17

void display() //method defined
{

System.out.println(“Super x = “+ x);
}

}
class Sub extends Super
{

int y;
Sub (int x, int y)
{

super (x);
this.y = y;

}
void display() //method defined again
{

System.out.println(“Super x = “ + x);
System.out.println(“Sub y = “ + y);

}
}
class OverrideTest
{

public static void main (String args [])
{

Sub s1 = new Sub (100, 200);
s1.display();

}
}

The output of Program 8.7 :
Super x = 100
Sub y = 200

Note that the method display () defined in the subclass is invoked.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 1

1
Managing errors & exceptions: introduction, types of errors, exceptions, syntax of
exception handling construct, multiple catch statements, the finally clause, defining
and throwing user-defined exceptions, the throw statement

Rarely does a program run successfully at its very first attempt. It is common to make
mistakes while developing as well as typing a program. A mistake might lead to an error
causing to program to produce unexpected results. Errors are the wrong that can make a
program go wrong.
An error may produce an incorrect output or may terminate the execution of the program
abruptly or even may cause the system to crash. It is therefore important to detect and
manage properly all the possible error condition in the program so that the program will
not terminate or crash during execution.

TYPES OF ERRORS
Errors may broadly be classified into two categories:

 Compile-time errors
 Run-time errors

Compile-Time Errors
All syntax errors will be detected and displayed by the java compiler and therefore these
errors are known as compile-time errors. Whenever the compiler displays an error, it will
not create the .classclass. it is therefore necessary that we fix all the errors before we can
successfully compile and run the program.

Next Program illustration of compile-time errors
/* this program contains an error*/
class Error1
{

public static void main (String args [])
{

System.out.println(“Hello java!”) // Missing;
}

}

The java compiler does a nice job of telling us where the errors are in the program. For
example, if we have missed the semicolon at the end of print statement in program ,the
following message will be displayed in the screen:

Error1. java :7: ‘;’ expected
System.out.println (“Hello java!”)

^
1 error

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 2

We can now go to the appropriate line, correct the error, and recompile the program.
Sometimes, a single error may be the source of multiple errors later in the compilation. For
example, use of an undeclared variable in a number of places will cause a series of errors
of type “undefined variable”. We should generally consider the earliest errors as the major
source of our problem. After we fix such an error, we should recompile the program and
look for other errors.

Most of the compile-time errors are due to typing mistakes. Typographical errors are hard
to find. We may have to check the code word by word, or even character. The most
common problems are:

 Missing (or mismatch of) brackets in classes and methods
 Misspelling of identifiers and keywords
 Missing double quotes in strings
 Use of undeclared variables
 Incompatible types in assignments / initialization
 Bad references to objects
 Use of = in place of == operator
 And so on

Other errors we may encounter are related to directory paths. An error such as
Javac : command not found

means that we have not set the path correctly. We must ensure that the path includes the
directory where the java executables are stored.

Run-Time Errors
Sometimes, a program may compile successfully creating the .classfile but may not run
properly. Such programs may produce wrong results due to wrong logic or may terminate
due to errors such as stack overflow. Most common run-time errors are:

 Dividing an integer by zero
 Accessing an element that is out of the bounds of an array
 Trying to store a value into an array of an incompatible class or type
 Trying to cast an instance of a class to one of its subclasses
 Passing a parameter that is not in a valid rang or value for a method
 Trying to illegally change the state of a thread
 Attempting to use a negative size for an array
 Using a null object reference as a legitimate object reference to access a

method or a variable.
 Converting invalid string to a number
 Accessing a character that is out of bounds of a string
 And may more

When such errors are encountered, java typically generates an error message and aborts
the program. Program illustrates how a run-time error causes termination of execution of
the program.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 3

Next Program illustration of run-time errors
class Error2{

public static void main(String args[]){
int a=10;
int b=5;

int c=5;
int x=a/(b-c); //Division by zero
System.out.println(x=”+x);
int y=a/(b+c);
System.out.prinln(“y=”+y);

}
}

Above Program is syntactically correct and therefore does not cause any problem during
compilation.However while executing, it display the following message and stops without
executing further statements.

Java.lang.ArithmeticException: /by zero
At Error2.main(error2.java:10)

When java run-time tries to execute a division by zero, it generates an error condition,
which causes the programe to stop after displaying an appropriate message.

EXCEPTIONS
An exception is a condition that is caused by a run-time error in the program. When the
java interpreter encounters an error such as dividing an integer by zero, it creates an
exception object and throws it(i.e.informs us that an error has occurred).
If the execution object is not caught and handled properly, the interpreter will display an
error message as shown in the output of above program and will terminate the program. If
we want the program to continue with the exception of the remaining code, then we should
try to catch the exception object thrown by the error condition and then display an
appropriate message for taking corrective actions. This task is known as exception
handling.
The purpose of exception handling mechanism is to provide a means to detect and report
an “exceptional circumstance” so that appropriate action can be taken. The mechanism
suggests incorporation of a separate error handling code that performs te following tasks:

1. Find the problem (Hitthe exception)
2. Inform that an error has occurred (Throwthe exception)
3. Receive the error information (catchthe exception)
4. Take corrective actions (Handlethe exception)

The error handling code basically consists of two segments, one to detect errors and to
throw exceptions and the other to catch exception and to take appropriate actions.
When writing programs, we must always be on the lookout for places in the program
where an exception could be generated. Some common exception that we must watch out
for catching are listed in table

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 4

Exception Type Cause of Exception
ArithmeticException Caused by math errors such as division by

zero
ArrayIndexOutOfBoundsException Caused by bad array indexes.
Array StoreException Caused when a programe tries to store the

wrong type of data in an array
FileNot FoundException Caused by an attempt to access a

nonexistent file
IoException Caused by general I/O failures, such as

inability to read from a file
NullPointerException Caused by referencing a null object
NumberFormatException Caused when a conversion between

strings and number fails
OutOfMemoryException Caused when there’s not enough memory

to allocate a new object
SecurityException Caused when an applet tries to perform an

action not allowed by the browser’s
security setting

StackOverFlowException Caused when the system runs out of stack
space

StringIndexOutOfBoundsException Caused when a program attempts to
access a nonexistent character position in
a string

Exception in java can be categorized into two types:
 Checked exception:These exception are explicitly handled in the code itself with

the help of try-catch blocks. Checked exceptions are extended from the
java.lang.Exceptionclass.

 Unchecked exception: these exception are not essentially handled in the
programe code; instead the JVM handles such exceptions. Unchecked exception
are from the java.lang.RuntimeException class.

it is important to note that checked and unchecked exception are absolutely similar as far
as their functionality is concerned; the difference lies only in the way they are handled.
SYNTAX OF EXCEPTION HANDLING CODE

Exception object creator
Throws exception object

Exception handler

try Block
Statement that

causes an
exception

catch Block
Statement that

causes an
exception

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 5

Java use a keyword tryto preface a block of code that is likely to cause an error condition
ans throw” an exception. A catch block defined by the keyword catch“catches” the
exception thrown” by thee try block and handles it appropriately. The catch block is added
immediately after the try block. The following example illustrates the use of simple try and
catch statements:
try{

Statement; // generates an exception
}

catch (Exception-type e)
{

Statement; // processes the exception
}

…………………..
………………….

The try block can have one or more statements that could generate an exception. If any
one statement generates an exception, the remaining, the remaining statements in the
block are skipped and exception jumps to the catch block that is placed next to the try
block.

The catch block too can have one or more statements that are necessary to process the
exception. Remember that every try statement should be followed by at least one catch
Statement; otherwise compilation error will occur.

Note that the catch statements works like a method definition. The catch statement is
passed a single parameter, which is reference to the exception object thrown (by the try
block). If the parameter matches with the type of exception object, then the exception is
caught and statements in the catch block will be executed. Otherwise, the exception is not
caught and the default exception handler will cause the execution to terminate.
Next Program illustrates the use of try and catch blocks to handle an arithmetic exception.
Note that program is a modified version of last program.

This Program Using try and catch for exception handling
Class Error3
{

public static void main (String args[])
{

int a=10;
int b=5;
int c=5;
int x , y ;
try
{

x=a/(b-c); //Exception here
}

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 6

catch (ArithmeticException e)
{
System.out.println(“Division by zero”);
}

y=a/(b+c);
System.out.prinln(“y=”+y);

}
}

Program display the following output:
Division by zero
Y = 1

Note that the program did not stop at the point of exceptional condition. It catches the
error condition, prints the error message, and then continues the execution, as if nothing
has happened. Compare with the output of last program which did not give the value of
y.
Next Program shown another example of using exception handling mechanism. Here, the
try-catch block catches the invalid entries in the list of command line arguments.
class CLineInput{

public static void main (String args[]){
int invalid= 0 ; // Number of invalid arguments
int number, count=0;
for (int i=0;i<args.length;i++){

try{
Number = Integer.parseInt(args[i]);

}
catch (NumberFormatException e){

Invalid =invalid +1 ;//Caught an invalid number
System.out.println(“invalid number:”+ arg[i]);
//Skip the remaining part of the loop

Continue;
}

count = count+1;
}

System.out.println(“valid numbers = +count);
Sysatem.out.println(invalid numbers = +invalid);

}
}

Note the use of the wrapper class integerto obtain an int number from a string:
Number = Integer.parseInt (args[i])

Remember that yhe number are supplied to the programe through the command line and
therefore they are stored as string in the array args[]. Since the above statement is placed
in the try block, an exeption is thrown if the string is improperly formatted and the number
is not included in the count.
When we run the program with the command line:

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 7

Java ClineInput 15 25.75 40 java 10.5 65
It produces the following output:

Invalid number: 25.75
Invalid number: java
Invalid number: 10.5

Valid numbers = 3
Invalid numbers = 3

There could be situations where there is a possibility of generation of multiple exception of
different types within a particular block of the program code. We can use nested try
statements in such situations. The execution of the corresponding catch blocks of nested
try statements is done using a stack. The program below showed the example of nested
try statements:
Program of Nested try statements
class eg_nested_try{

public static void main(String args[]){
try{

int a=2,b=4,c=2,x=7,z;
int p[]={2};
int p{3}=33;

try {
z=x/(b*b)-(4*a*c));
System.out.println(“the value of z is =”+z);

}
catch (ArithmeticException e){

System.out.println(“Division be zero in Arithmetic expression”);
}

}
}

catch (ArrayIndexOutOfBounException e){
System.out,println(“array index is out-of-bounds);

}
}

}
Program displays the following output:

Array index out-of-bounds

MULTIPLE CATCH STATEMENTS
It is possible to have more than one catch statement in the catch block as illustrated
below:

try{
statement ; //generates an exception

}
catch (Exception-Type-1 e){

Statement; //processes exception type 1

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 8

}
catch (Exception-Type-2 e){

Statement; //processes exception type 2
}
catch (Exception-Type-N e){

Statement; //processes exception type N
}

When an exception in a try block is generated, the java treats the multiple catch statement
like cases in a switch statement. The first statement whose parameter matches with the
exception object will be executed, and the remaining statements will be skipped.
Note that java does not require any processing of the exception at all. We can simply have
a catch statement with an empty block to avoid program abortion.

Example:
catch (Exception e);

the catch statement simply ends with a semicolon, which does nothing. This statement will
catch an exception and then ignore it.
Next Program Using multiple catch blocks
class Error4
{
public static void main (String args[])

{ int a[]={5,10};
int b=5;

try
{

int x=a[2]/b-a[1];
}

catch (ArithmeticException e)
{

System.out.println(“Division by zero”);
}

catch (ArrayIndexOutOfBoundsException e)
{

System.out.println(“array index error”);
}

catch (ArrayStoreException e)
{

System.out.println(“wrong data type”);
}
int y=a[1]/a[0];
System.out.println(“Y=”+y);

}
}

Above Program uses a chain of catch blocks and, when run, produces the following
output:

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 9

Array index error
Y = 2

Note that the array element a[2] does not exist because array a is defined to have only
two elements, a[0] and a[1]. Therefore, the index 2 is outside the array boundary thus
causing the block

Catch (ArrayIndexOutOfBoundsException e)
to catch and handle the error. Remaining catch blocks are skipped.

USING FINALLY STATEMENT
Java supports another statement known as finallystatement that can be used to handle
an exception that is not caught by any of the previous catch statements,finallyblock can
be used to handle any exception generated within a try block. It may be added
immediately after the try block or after the last catch block shown as follows:

try try
{ {

……….. ………………
……….. ……………….

} }
catch (……)

{
finally ……………

{ ……………
…………. }

………….. catch (…..)
} {

………..
………..

}
finally

{
………….
…………..

}

When a finallyblock id defined, this is guaranteed to execute, regardless of whether or not
in exception is thrown. As a result, we can use it to perform certain house-keeping
operations such as closing files and releasing system resources.
In last Program, we may include the last two statements inside a finally block as shown
below:
Finally {

int y = a[1]/a[0];
System.out.prinln(“Y=” + y);

}
This will produce the same output.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 10

THROWING OUR OWN EXCEPTION
There may be times when we would like to throw our own exceptions. We can do this by
using the keyword throw as follows:
throw new Throwabl’e subclass;
Examples:

thrown new ArithmeticException () ;
thrown new NumberFormatException () ;

program demonstrates the use of a user-defined subclass of Throwable class. Note that
Exceptionis a subclass of Throwable and therefore MyExceptionis a subclass of
Throwableclass. An object of a class that extends Throwablecan be thrown and caught.
Next Program Throwing our own exception
import java.lang.Exception;
class MyException extends Exception
{ MyException (String message)

{ super(messge);
}

}
class TestMyException
{

public static void main (String args[])
{

int x=5, y=1000;
try
{

float z= (float) x / (float) y;
if (z < 0.01)
{

throw new MyException(“Number is too small”);
}

}
catch (MyException e)
{

System.out.println(“Caught my exception”);
System.out.println(e.getMessage());
}
finally
{System.out.println(“ I am always here”);
}

}
}
A run of above program produces:

Caught my exception
Number is too small
I am always here

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 11

The object e which contain the error message “Number is too small” is caught by the
catch block which then displays the message using the getMessage() method.
Note that above Program also illustrates the use of finally block. The last line of output is
produced by the finally block.
There could be situations where there is a possibilitythat a method might throw certain
kinds of exception but there is no exception handling mechanism prevalent within the
method. In such a case, it is important that the method caller is intimated explicitly that
certain types of exceptions could be expected from the called method, and the caller must
get prepared with some catching mechanism to deal with it.
The throws clause is used in such a situation. It is specified immediately after the method
declarationstatement and just before the opening brace. The Program 13.8 shown an
example of using the throws clause:
Program : Use of throws
class Example throws
{static void divide_m() throws ArithmeticException
{int x = 22 , y = 0.2;
z = x/y;
}
public static void main (String args[])
{
try
{
divide_m();
}
catch (ArithmeticException e)
{
System.out.println(“Caught the exception”+e);
}
}
}

Above Program displays the following output:
Caught the exception java.lang.ArithmeticException: /by zero

2 Managing I/O files : introduction, concept of streams, Character stream classes

Introduction
Stream is an abstract demonstration of input or output device. By using stream, we can
write or read data. To bring in information, a program is open a stream on an information
source (a file, memory, a socket) and read information sequentially. In this unit, we will
learn the concept of stream, I/O package.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 12

Concept of Stream:
The Java Input/Output (I/O) is a part of java.io package. The java.io package contains a
relatively large number of classes that support input and output operations. The classes in
the package are primarily abstract classes and stream-oriented that define methods and
subclasses which allow bytes to be read from and written to files or other input and output
sources.

For reading the stream:
Open the stream
Read information
Close the stream

For writing in stream:
Open the stream
Write information
Close the stream

There are two types of stream as follows:
o Byte stream
o Character stream

Byte Streams:
It supports 8-bit input and output operations. There are two classes of byte stream

InputStream :The InputStream class is used for reading the data such as a byte and
array of bytes from an input source. An input source can be a file, a string, or memory
that may contain the data. It is an abstract class that defines the programming interface for
all input streams that are inherited from it. An input stream is automatically opened when
you create it. You can explicitly close a stream with the close() method, or let it be closed
implicitly when the object is found as a garbage.

OutputStream: The OutputStream class is a sibling to InputStream that is used for writing
byte and array of bytes to an output source. Similar to input sources, an output source can
be anything such as a file, a string, or memory containing the data. Like an input stream,
an output stream is automatically opened when you create it. You can explicitly close an
output stream with the close() method, or let it be closed implicitly when the object is
garbage collected.

Character Streams:
It supports 16-bit Unicode character input and output. There are two classes of character
stream as follows:

o Reader
o Writer

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 13

These classes allow internationalization of Java I/O and also allow text to be stored using
international character encoding.
Reader:

- BufferedReader
o LineNumberReader
- CharAraayReader
- PipedReader
- StringReader
- FilterReader
o PushbackReader
- InputStreamReader
o FileReader

Writer:
- BufferedWriter
- CharAraayWriter
- FileWriter
- PipedWriter
- PrintWriter
- String Writer
- OutputStreamWriter
o FileWriter

How Files and Streams Work:
Java uses streams to handle I/O operations through which the data is flowed from one
location to another. For example, an InputStream can flow the data from a disk file to the
internal memory and an OutputStream can flow the data from the internal memory to a
disk file. The disk-file may be a text file or a binary file. When we work with a text file, we
use a character stream where one character is treated as per byte on disk. When we
work with a binary file, we use a binary stream.
The working process of the I/O streams can be shown in the given diagram.

Classes:

Standard Streams: Standard Streams are a feature provided by many operating systems.
By default, they read input from the keyboard and write output to the display. They also
support I/O operations on files.

Standard Input: - Accessed through System.in which is used to read input
from the keyboard.
Standard Output: - Accessed through System.out which is used to write
output to be display.
Standard Error: - Accessed through System.err which is used to write error
output to be display.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 14

System.in is a byte stream that has no character stream features. To use Standard Input
as a character stream, wrap System.in within the InputStreamReader as an argument.
InputStreamReader inp= new InputStreamReader (System.in);

Working with Reader classes: Java provides the standard I/O facilities for reading text
from either the file or the keyboard on the command line. The Reader class is used for this
purpose that is available in the java.io package. It acts as an abstract class for reading
character streams. The only methods that a subclass must implement are read(char[],
int, int) and close(). The Reader class is further categorized into the subclasses.
The following diagram shows a class-hierarchy of the java.io.Reader class.
However, most subclasses override some of the methods in order to provide higher
efficiency, additional functionality, or both.

InputStreamReader: An InputStreamReader is a bridge from byte streams to character
streams i.e. it reads bytes and decodes them into Unicode characters according to a
particular platform. Thus, this class reads characters from a byte input stream. When you
create an InputStreamReader, you specify an InputStream from which, the
InputStreamReader reads the bytes.

The syntax of InputStreamReader is written as:
InputStreamReader<variable_name>= new InputStreamReader (System.in)

BufferedReader:
The BufferedReader class is the subclass of the Reader class. It reads character-input
stream data from a memory area known as a buffer maintains state. The buffer size may
be specified, or the default size may be used that is large enough for text reading
purposes. BufferedReader converts an unbuffered stream into a buffered stream using the
wrapping expression, where the unbuffered stream object is passed to the constructor for
a buffered stream class.
For example the constructors of the BufferedReader class shown as:
BufferedReader (Reader in): Creates a buffering character-input stream that uses a
default-sized input buffer.
BufferedReader (Reader in, int sz): Creates a buffering character-input stream that uses
an input buffer of the specified size.
BufferedReader class provides some standard methods to perform specific reading
operations shown in the table. All methods throw an IOException, if an I/O error occurs.

Method Return Type Description
read() int Reads a single character
read(char[] cbuf, int
off, int len)

int Read characters into a portion of an array.

readLine() String Read a line of text. A line is considered to be
terminated by ('\n').

close() void Closes the opened stream.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 15

This program illustrates use of standard input stream to read the user input.
import java.io.*;
public class ReadStandardIO {

public static void main(String[] args) throws IOException {
InputStreamReader inp = new InputStreamReader(System.in);
BufferedReader br = new BufferedReader(inp); System.out.println("Enter
text : ");
String str = in.readLine();
System.out.println("You entered String : "); System.out.println(str);

}
}
Output of the Program:
C:\>javac ReadStandardIO.java
C:\>java ReadStandardIO
Enter text: this is an Input Stream

You entered String: this is an Input Stream

3 Introduction to the concept of package, Java API packages, using the System package

Packages: Introduction
We have repeatedly stated that one of the main features of OOP is its ability to reuse the
code already created. One way of achieving this is by extending the classes and
implementing the interfaces. This is limited to reusing the classes within a program. What
if we need to use classes from other programs without physically copying them into the
program under development? This can be accomplished in Java by using what is known
as packages, a concept similar to "class libraries" in other languages. Another way of
achieving the reusability in Java, therefore, is to use packages.

Packages are Java's way of grouping a variety of classes and/or interfaces together. The
grouping is usually done according to functionality. In fact, packages act as "containers”
for classes. By organizing our classes into packages we achieve the following benefits:

1. The classes contained in the packages of other programs can be easily reused.
2. In packages, classes can be unique compared with classes in other packages. That

is, two classes in two different packages can have the same name. They may be
referred by their fully qualified name, comprising the package name and the class
name.

3. Packages provide a way to "hide" classes thus preventing other programs or
packages from accessing classes that are meant for internal use only.

4. Packages also provide a way for separating "design" from "coding". First we can
design classes and decide their relationships, and then we can implement the Java
code needed for the methods. It is possible to change the implementation of any
method without affecting the rest of the design.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 16

For most applications, we will need to use to different sets of classes, one for the internal
representation of our program's data, and the other for external presentation purposes.
We may have to build our own classes for handling our data and use existing class
libraries for designing user interfaces. Java packages are therefore classified into two
types. The first category is known as Java API packages and the second is known as user
defined packages.

Java API packages
Java API provides a large number of classes grouped into different packages according to
functionality. Most of the time we use the package available with the Java API. Below fig
shows the functional breakdown of packages that are frequently used in the programs:

Using System Packages

The packages are organised in a hierarchical structure as illustrated in below Fig. This
shows that package named java contains the package awt, which in turn contains various
classes required implementing graphical user interface.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 17

There are two ways of accessing the classes stored in a package. The first approach is to
use the fully qualified class name of the class that we want to use. This is done by the
package name containing the class and then appending the class name to it using the dot
operator. For example, if we want to refer to the class Color in the awt package, then we
may do so as follows:
java.awt.Colour

Awt is a package within the package java and the hierarchy is represented by separating
the levels with dots. This approach is perhaps the test and easiest one if we need to
access the class only once or when we need not have to access any other classes of the
package.
But, in many situations, we might want to use a class in a number of places in the program
or we may like to use many of the classes contained in a package. We may achieve this
as follows:
import packagename.classname;
or
import packagename. *;

These are known as import statements and must appear at the top of the file,
before any class declarations, import is a keyword.

4 Using java.lang (String, Math)

String
String manipulation is the most common part of many Java programs. Strings represent a
sequence of characters. The easiest way to represent a sequence of characters in Java is
by using a character array.
Example:
char charArray[] = new char[4];
charArray[0] = ‘J’;
charArray[1] = ‘a’;
charArray[2] = ‘v’;
charArray[3] = ‘a’;

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 18

Although character arrays have the advantage of being able to query their length, they
themselves are not good enough to support the range of operations we may like to
perform on strings. For example, copying once character array into another might require
a lot of book keeping effort. Fortunately, Java is equipped to handle these situations more
efficiently.

In Java, string are class objects and implemented using two classes, namely, String and
StringBuffer. A Java string is an instantiated object of String class. Java strings, as
compared to C strings, are more reliable and predictable. This is basically due to C’s lack
of bonus-checking. A Java string is not a character array and is not NULL terminated.
Strings may be declared and created as follows:

String stringName;
stringName = new String(“string”);
Example: String firstName;

firstName = new String(“Anil”);

These two statements may be combined as follows:
String firstName = new String(“Anil”);

Like arrays, it is possible to get the length of string using the length method of the String
class.

int m = firstName.length();

Note that use of parentheses here. Java strings can be concatenated using the +
operator.
Examples: String fullName= name1 + name2;

String city1 = “New” + “Delhi”;
Where name1 and name2 are java strings containing string constants. Another example is
System.out.println(firstName + “Kumar”);

String Arrays
We can also create and use arrays that contain strings. The statement
String itemArray[]=new String[3];
Will create an itemArray of size 3 to hold three string constants. We can assign the strings
to the itemArray element by element using three different statements or more efficiently
using a for loop.

String Methods
The String class defines a number of methods that allow us to accomplish a variety of
string manipulation task. Below table list some of the most commonly used string
methods, and their tasks.

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 19

Method Call Task Performed
s2 = s1.toLowerCase(); Converts the string s1 to all lowercase
s2 = s1.toUpperCase(); Converts the string s1 to all uppercase
s2 = s1.replace(‘x’,’y’); Replace all appearances of x with y
s2 = s1.trim() Remove white spaces at the beginning and end of the

string s1
s1.equals(s2) Returns ‘true’ if s1 is equal to s2
s1.equalsIgnoreCase(s2) Returns ‘true’ if s1 is equal to s2, ignoring the case of

characters
s1.length() Gives the length of s1
s1.charAt(n) Gives nth character of s1
s1.compareTo(s2) Returns negative if s1<s2, positive if s1>s2, o if s1 is

equal to s2
s1.concat(s2) Concatenates s1 and s2
s1.substring(n) Gives substring starting from nth character
s1.substring(n,m) Gives substring starting from nth character upto mth

character(not including mth)
String.valueOf(p) Creates a string object of the parameter p
p.toString() Creates a string representation of the object p
s1.indexOf(‘x’) Gives the position of the first occurrence of ‘x’ in the

string s1
s1.indexOf(‘x’,n) Gives the position of ‘x’ that occurs after nth position in

the string s1

StringBuffer Class
StringBuffer is a peer class of String. While String creates string of fixed length,
StringBuffer creates string of flexible length that can be modified in terms of both length
and content. We can insert characters and substring in the middle of a string, or append
another string to the end. Below table lists some of the methods that are frequently used
in string manipulations.

Method Call Task Performed
s1.setCharAt(n,’x’) Modifies the nth character to x
s1.append(s2) Appends the string s2 at the end of s1
s1.insert(n,s2) inserts the string s2 at the position n of the string s1
s1.setLength(n) sets the length of the string s1 to n. if n<s1.length() s1 is
truncated

If n>s1.length() zeros are added to s1

Mathematical Functions
Mathematical functions such as cos, sqrt, log, etc. are frequently used in analysis of real-
life problems. Java supports these basic math functions through Math class defined in the
java.lang package. Below table lists the math functions defined in Math class. These
functions should be used as follows:
Math.function_name()

US04CBA23 UNIT-III OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 20

Example: double y= Math.sqrt(x);

Function Action
sin(x) returns the sine of the angle x in radians
cos(x) returns the cosine of the angle x in radians
tan(x) returns the tangent of the angle x in radians
asin(y) returns the angle whose sine is y
acos(y) returns the angle whose cosine is y
atan(y) returns the angle whose tangent is y
atan2(x,y) returns the angle whose tangent is x/y
pow(x,y) returns x raised to y (xy)
exp(x) returns e raised to x (ex)
log(x) returns the natural logarithm of x
sqrt(x) returns the square root of x
ceil(x) returns the smallest whole number greater than or equal to x(Rounding up)
floor(x) returns the largest whole number less than or equal to x(Rounding down)
rint(x) returns the truncated value of x
round(x) returns the integer closest to the argument
abs(a) returns the absolute value of a
max(a,b) returns the maximum of a and b
min(a,b) returns the minimum of a and b

Note that x and y are double type parameters, a and b may be ints, longs, floats and
doubles.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 1

1 Applet Introduction, Applet Architecture and Applet Skeleton – set background,
foreground color

1.1 Applet Introduction
 All applets are subclasses of Applet. Thus, all applets must import java.applet.

Applets must also import java.awt. Recall that AWT stands for the Abstract Window
Toolkit. Since all applets run in a window, it is necessary to include support for that
window.

 Applets are not executed by the console-based Java run-time interpreter. Rather,
they are executed by either a Web browser or an applet viewer. The figures shown
in this chapter were created with the standard applet viewer, called appletviewer,
provided by the SDK. But you can use any applet viewer or browser you like.
Execution of an applet does not begin at main(). Actually, few applets even have
main() methods. Instead, execution of an applet is started and controlled with an
entirely different mechanism, which will be explained shortly. Output to your
applet’s window is not performed by System.out.println(). Rather, it is handled with
various AWT methods, such as drawString(), which outputs a string to a specified
X,Y location. Input is also handled differently than in an application.

 Once an applet has been compiled, it is included in an HTML file using the APPLET
tag. The applet will be executed by a Java-enabled web browser when it
encounters the APPLET tag within the HTML file. To view and test an applet more
conveniently, simply include a comment at the head of your Java source code file
that contains the APPLET tag. This way, your code is documented with the
necessary HTML statements needed by your applet, and you can test the compiled
applet by starting the applet viewer with your Java source code file specified as the
target. Here is an example of such a comment:
/*
<applet code="MyApplet" width=200 height=60> </applet>
*/

 This comment contains an APPLET tag that will run an applet called MyApplet in a
window that is 200 pixels wide and 60 pixels high. Since the inclusion of an
APPLET command makes testing applets easier, all of the applets shown in this
book will contain the appropriate APPLET tag embedded in a comment.

1.2 Applet Architecture

 An applet is a window-based program. As such, its architecture is different from the
so-called normal, console-based programs shown in the first part of this book. If
you are familiar with Windows programming, you will be right at home writing
applets. If not, then there are a few key concepts you must understand.

 First, applets are event driven. Although we won’t examine event handling until the
following chapter, it is important to understand in a general way how the event-
driven architecture impacts the design of an applet. An applet resembles a set of
interrupt service routines. Here is how the process works. An applet waits until an
event occurs.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 2

 The AWT notifies the applet about an event by calling an event handler that has
been provided by the applet. Once this happens, the applet must take appropriate
action and then quickly return control to the AWT. This is a crucial point. For the
most part, your applet should not enter a “mode” of operation in which it maintains
control for an extended period. Instead, it must perform specific actions in response
to events and then return control to the AWT run-time system. In those situations in
which your applet needs to perform a repetitive task on its own (for example,
displaying a scrolling message across its window), you must start an additional
thread of execution. (You will see an example later in this chapter.)

 Second, the user initiates interaction with an applet—not the other way around. As
you know, in a nonwindowed program, when the program needs input, it will prompt
the user and then call some input method, such as readLine(). This is not the way
it works in an applet. Instead, the user interacts with the applet as he or she wants,
when he or she wants. These interactions are sent to the applet as events to which
the applet must respond. For example, when the user clicks a mouse inside the
applet’s window, a mouse-clicked event is generated. If the user presses a key
while the applet’s window has input focus, a keypress event is generated. As you
will see in later chapters, applets can contain various controls, such as push
buttons and check boxes. When the user interacts with one of these controls, an
event is generated.

 While the architecture of an applet is not as easy to understand as that of a
console-based program, Java’s AWT makes it as simple as possible. If you have
written programs for Windows, you know how intimidating that environment can be.
Fortunately, Java’s AWT provides a much cleaner approach that is more quickly
mastered.

1.3 An Applet Skeleton (Life Cycle)

 All but the most trivial applets override a set of methods that provides the basic
mechanism by which the browser or applet viewer interfaces to the applet and
controls its execution. Four of these methods—init(), start(), stop(), and destroy()
are defined by Applet. Another, paint(), is defined by the AWT Component class.
Default implementations for all of these methods are provided. Applets do not need
to override those methods they do not use. However, only very simple applets will
not need to define all of them. These five methods can be assembled into the
skeleton shown here:
// An Applet skeleton.
import java.awt.*;
import java.applet.*;
/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/
public class AppletSkel extends Applet {
// Called first.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 3

public void init() {
// initialization

}
/* Called second, after init(). Also called whenever the applet is restarted. */

public void start() {
// start or resume execution

}
// Called when the applet is stopped.

public void stop() {
// suspends execution

}
/* Called when applet is terminated. This is the last method executed. */

public void destroy() {
// perform shutdown activities

}
// Called when an applet's window must be restored.

public void paint(Graphics g) {
// redisplay contents of window

}
}

 Although this skeleton does not do anything, it can be compiled and run. When run,
it generates the following window when viewed with an applet viewer:

1.4 Applet Initialization and Termination:
 It is important to understand the order in which the various methods shown in the

skeleton are called. When an applet begins, the AWT calls the following methods,
in this sequence:

1. init()
2. start()
3. paint()

 When an applet is terminated, the following sequence of method calls takes place:
1. stop()
2. destroy()

 Let’s look more closely at these methods.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 4

init()
 The init() method is the first method to be called. This is where you should initialize

variables. This method is called only once during the run time of your applet.
start()

 The start() method is called after init(). It is also called to restart an applet after it
has been stopped. Whereas init() is called once—the first time an applet is
loaded—start() is called each time an applet’s HTML document is displayed
onscreen. So, if a user leaves a web page and comes back, the applet resumes
execution at start().
paint()

 The paint() method is called each time your applet’s output must be redrawn. This
situation can occur for several reasons. For example, the window in which the
applet is running may be overwritten by another window and then uncovered. Or
the applet window may be minimized and then restored. paint() is also called when
the applet begins execution. Whatever the cause, whenever the applet must redraw
its output, paint() is called. The paint() method has one parameter of type
Graphics. This parameter will contain the graphics context, which describes the
graphics environment in which the applet is running. This context is used whenever
output to the applet is required.
stop()

 The stop() method is called when a web browser leaves the HTML document
containing the applet—when it goes to another page, for example. When stop() is
called, the applet is probably running. You should use stop() to suspend threads
that don’t need to run when the applet is not visible. You can restart them when
start() is called if the user returns to the page.
destroy()

 The destroy() method is called when the environment determines that your applet
needs to be removed completely from memory. At this point, you should free up
any resources the applet may be using. The stop() method is always called before
destroy().

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 5

1.5 Simple Applet Display Methods

 As we’ve mentioned, applets are displayed in a window and they use the AWT to
perform input and output. Although we will examine the methods, procedures, and
techniques necessary to fully handle the AWT windowed environment in
subsequent chapters, a few are described here, because we will use them to write
sample applets.

 As we described in Chapter 12, to output a string to an applet, use drawString(),
which is a member of the Graphics class. Typically, it is called from within either
update() or paint(). It has the following general form:

void drawString(String message, int x, int y)

 Here, message is the string to be output beginning at x,y. In a Java window, the
upper-left corner is location 0,0. The drawString() method will not recognize
newline characters. If you want to start a line of text on another line, you must do so
manually, specifying the precise X,Y location where you want the line to begin. (As
you will see in later chapters, there are techniques that make this process easy.)

 To set the background color of an applet’s window, use setBackground(). To set
the foreground color (the color in which text is shown, for example), use
setForeground(). These methods are defined by Component, and they have the
following general forms:

void setBackground(Color newColor)
void setForeground(Color newColor)

 Here, newColor specifies the new color. The class Color defines the constants
shown here that can be used to specify colors:

Color.black Color.magenta
Color.blue Color.orange
Color.cyan Color.pink
Color.darkGray Color.red
Color.gray Color.white
Color.green Color.yellow
Color.lightGray

 For example, this sets the background color to green and the text color to red:
setBackground(Color.green);
setForeground(Color.red);

 A good place to set the foreground and background colors is in the init() method.
Of course, you can change these colors as often as necessary during the execution
of your applet. The default foreground color is black. The default background color
is light gray.

 You can obtain the current settings for the background and foreground colors by
calling getBackground() and getForeground(), respectively. They are also defined
by Component and are shown here:

Color getBackground()
Color getForeground()

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 6

 Here is a very simple applet that sets the background color to cyan, the foreground
color to red, and displays a message that illustrates the order in which the init(),
start(), and paint() methods are called when an applet starts up:

/* A simple applet that sets the foreground and
background colors and outputs a string. */
import java.awt.*;
import java.applet.*;
/*
<applet code="Sample" width=300 height=50>
</applet>
*/

public class Sample extends Applet{
String msg;
// set the foreground and background colors.
public void init() {
setBackground(Color.cyan);
setForeground(Color.red);
msg = "Inside init() --";
}
// Initialize the string to be displayed.
public void start() {
msg += " Inside start() --";
}
// Display msg in applet window.
public void paint(Graphics g) {
msg += " Inside paint().";
g.drawString(msg, 10, 30);
}
}

2 java.awt package (Button, CheckBox, CheckBoxGroup, Choice, Color, Label,
List, TextArea, TextField)

2.1 Control Fundamentals
 The AWT supports the following types of controls:

■ Labels
■ Push buttons
■ Check boxes
■ Choice lists
■ Lists
■ Text editing

 These controls are subclasses of Component.

2.1.1 Adding and Removing Controls

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 7

 To include a control in a window, you must add it to the window. To do this, you
must first create an instance of the desired control and then add it to a window by
calling add(), which is defined by Container. The add() method has several forms.
The following form is the one that is used for the first part of this chapter:

Component add(Component compObj)
 Here, compObj is an instance of the control that you want to add. A reference to

compObj is returned. Once a control has been added, it will automatically be visible
whenever its parent window is displayed.

 Sometimes you will want to remove a control from a window when the control is no
longer needed. To do this, call remove(). This method is also defined by Container.
It has this general form:

void remove(Component obj)
 Here, obj is a reference to the control you want to remove. You can remove all

controls by calling removeAll().

2.1.2 Responding to Controls
 Except for labels, which are passive controls, all controls generate events when

they are accessed by the user. For example, when the user clicks on a push button,
an event is sent that identifies the push button. In general, your program simply
implements the appropriate interface and then registers an event listener for each
control that you need to monitor. As explained in Chapter 20, once a listener has
been installed, events are automatically sent to it. In the sections that follow, the
appropriate interface for each control is specified.

2.2 Using Label
 The easiest control to use is a label. A label is an object of type Label, and it

contains a string, which it displays. Labels are passive controls that do not support
any interaction with the user. Label defines the following constructors:

 Label()
 Label(String str)
 Label(String str, int how)

 The first version creates a blank label. The second version creates a label that
contains the string specified by str. This string is left-justified. The third version
creates a label that contains the string specified by str using the alignment specified
by how. The value of how must be one of these three constants: Label.LEFT,
Label.RIGHT, or Label.CENTER.

 You can set or change the text in a label by using the setText() method. You can
obtain the current label by calling getText(). These methods are shown here:

 void setText(String str)
 String getText()

 For setText(), str specifies the new label. For getText(), the current label is
returned. You can set the alignment of the string within the label by calling
setAlignment(). To obtain the current alignment, call getAlignment(). The methods
are as follows:

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 8

 void setAlignment(int how)
 int getAlignment()

 Here, how must be one of the alignment constants shown earlier. The following
example creates three labels and adds them to an applet:
// Demonstrate Labels
import java.awt.*;
import java.applet.*;
/*
<applet code="LabelDemo" width=300 height=200>
</applet>
*/

public class LabelDemo extends Applet {
public void init() {
Label l1 = new Label();
l1.setText(“one”);
Label l2 = new Label("Two");
Label l3 = new Label("Three");
String str;
str=l3.getText();
// add labels to applet window
add(l1);
add(l2);
add(l3);
}
}

 Following is the window created by the LabelDemo applet. Notice that the labels
are organized in the window by the default layout manager. Later, you will see how
to control more precisely the placement of the labels.

2.3 Using Button
 The most widely used control is the push button. A push button is a component that

contains a label and that generates an event when it is pressed. Push buttons are
objects of type Button. Button defines these two constructors:

 Button()
 Button(String str)

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 9

 The first version creates an empty button. The second creates a button that
contains str as a label.

 After a button has been created, you can set its label by calling setLabel(). You
can retrieve its label by calling getLabel(). These methods are as follows:

 void setLabel(String str)
 String getLabel()

 Here, str becomes the new label for the button.

2.3.1 Handling Buttons

 Each time a button is pressed, an action event is generated. This is sent to any
listeners that previously registered an interest in receiving action event notifications
from that component. Each listener implements the ActionListener interface. That
interface defines the actionPerformed() method, which is called when an event
occurs.

 An ActionEvent object is supplied as the argument to this method. It contains both
a reference to the button that generated the event and a reference to the string that
is the label of the button. Usually, either value may be used to identify the button,
as you will see.

 Here is an example that creates three buttons labeled “Yes,” “No,” and
“Undecided.” Each time one is pressed, a message is displayed that reports which
button has been pressed. In this version, the label of the button is used to
determine which button has been pressed. The label is obtained by calling the
getActionCommand() method on the ActionEvent object passed to
actionPerformed().

// Demonstrate Buttons
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="ButtonDemo" width=250 height=150>
</applet>
*/
public class ButtonDemo extends Applet implements ActionListener {
String msg = "";
Button yes, no, maybe;
public void init() {
yes = new Button("Yes");
no = new Button("No");
maybe = new Button("Undecided");
add(yes);
add(no);
add(maybe);
yes.addActionListener(this);

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 10

no.addActionListener(this);
maybe.addActionListener(this);
}
public void actionPerformed(ActionEvent ae) {
String str = ae.getActionCommand();
if(str.equals("Yes")) {
msg = "You pressed Yes.";
}
else if(str.equals("No")) {
msg = "You pressed No.";
}
else {
msg = "You pressed Undecided.";
}
repaint();
}
public void paint(Graphics g) {
g.drawString(msg, 6, 100);
}
}

 Sample output from the ButtonDemo program is shown in below Figure.
 As mentioned, in addition to comparing button labels, you can also determine which

button has been pressed, by comparing the object obtained from the getSource()
method to the button objects that you added to the window. To do this, you must
keep a list of the objects when they are added. The following applet shows this
approach:
// Recognize Button objects.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="ButtonList" width=250 height=150>
</applet>
*/

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 11

public class ButtonList extends Applet implements ActionListener {
String msg = "";
Button bList[] = new Button[3];
public void init() {
Button yes = new Button("Yes");
Button no = new Button("No");
Button maybe = new Button("Undecided");
// store references to buttons as added
bList[0] = (Button) add(yes);
bList[1] = (Button) add(no);
bList[2] = (Button) add(maybe);
// register to receive action events
for(int i = 0; i < 3; i++) {
bList[i].addActionListener(this);
}
}
public void actionPerformed(ActionEvent ae) {
for(int i = 0; i < 3; i++) {
if(ae.getSource() == bList[i]) {
msg = "You pressed " + bList[i].getLabel();
}
}
repaint();
}
public void paint(Graphics g) {
g.drawString(msg, 6, 100);
}
}

 In this version, the program stores each button reference in an array when the
buttons are added to the applet window. (Recall that the add() method returns a
reference to the button when it is added.) Inside actionPerformed(), this array is
then used to determine which button has been pressed.

 For simple applets, it is usually easier to recognize buttons by their labels.
However, in situations in which you will be changing the label inside a button during
the execution of your program, or using buttons that have the same label, it may be
easier to determine which button has been pushed by using its object reference.

2.4 Checkboxes
 A check box is a control that is used to turn an option on or off. It consists of a small

box that can either contain a check mark or not. There is a label associated with
each check box that describes what option the box represents. You change the
state of a check box by clicking on it. Check boxes can be used individually or as
part of a group. Check boxes are objects of the Checkbox class.

 Checkbox supports these constructors:
 Checkbox()

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 12

 Checkbox(String str)
 Checkbox(String str, boolean on)
 Checkbox(String str, boolean on, CheckboxGroup cbGroup)
 Checkbox(String str, CheckboxGroup cbGroup, boolean on)

 The first form creates a check box whose label is initially blank. The state of the
check box is unchecked. The second form creates a check box whose label is
specified by str. The state of the check box is unchecked. The third form allows you
to set the initial state of the check box. If on is true, the check box is initially
checked; otherwise, it is cleared. The fourth and fifth forms create a check box
whose label is specified by str and whose group is specified by cbGroup. If this
check box is not part of a group, then cbGroup must be null. (Check box groups are
described in the next section.) The value of on determines the initial state of the
check box. To retrieve the current state of a check box, call getState(). To set its
state, call setState(). You can obtain the current label associated with a check box
by calling getLabel(). To set the label, call setLabel(). These methods are as
follows:

 boolean getState()
 void setState(boolean on)
 String getLabel()
 void setLabel(String str)

 Here, if on is true, the box is checked. If it is false, the box is cleared. The string
passed in str becomes the new label associated with the invoking check box.
Handling Check Boxes Each time a check box is selected or deselected, an item
event is generated. This is sent to any listeners that previously registered an
interest in receiving item event notifications from that component. Each listener
implements the ItemListener interface. That interface defines the
itemStateChanged() method. An ItemEvent object is supplied as the argument to
this method. It contains information about the event (for example, whether it was a
selection or deselection).

 The following program creates four check boxes. The initial state of the first box is
checked. The status of each check box is displayed. Each time you change the
state of a check box, the status display is updated.
// Demonstrate check boxes.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="CheckboxDemo" width=250 height=200>
</applet>
*/
public class CheckboxDemo extends Applet implements ItemListener {
String msg = "";
Checkbox Win98, winNT, solaris, mac;
public void init() {
Win98 = new Checkbox("Windows 98/XP", null, true);

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 13

winNT = new Checkbox("Windows NT/2000");
solaris = new Checkbox("Solaris");
mac = new Checkbox("MacOS");
add(Win98);
add(winNT);
add(solaris);
add(mac);
Win98.addItemListener(this);
winNT.addItemListener(this);
solaris.addItemListener(this);
mac.addItemListener(this);
}
public void itemStateChanged(ItemEvent ie) {
repaint();
}
// Display current state of the check boxes.
public void paint(Graphics g) {
msg = "Current state: ";
g.drawString(msg, 6, 80);
msg = " Windows 98/XP: " + Win98.getState();
g.drawString(msg, 6, 100);
msg = " Windows NT/2000: " + winNT.getState();
g.drawString(msg, 6, 120);
msg = " Solaris: " + solaris.getState();
g.drawString(msg, 6, 140);
msg = " MacOS: " + mac.getState();
g.drawString(msg, 6, 160);
}
}
Sample output is shown in below.

2.5 CheckboxeGroup

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 14

 It is possible to create a set of mutually exclusive check boxes in which one and
only one check box in the group can be checked at any one time. These check
boxes are often called radio buttons, because they act like the station selector on a
car radio—only one station can be selected at any one time. To create a set of
mutually exclusive check boxes, you must first define the group to which they will
belong and then specify that group when you construct the check boxes. Check
box groups are objects of type CheckboxGroup. Only the default constructor is
defined, which creates an empty group.

 You can determine which check box in a group is currently selected by calling
getSelectedCheckbox(). You can set a check box by calling setSelectedCheckbox
(). These methods are as follows:

 Checkbox getSelectedCheckbox()
 void setSelectedCheckbox(Checkbox which)

 Here, which is the check box that you want to be selected. The previously selected
check box will be turned off.Here is a program that uses check boxes that are part
of a group:
// Demonstrate check box group.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/* <applet code="CBGroup" width=250 height=200>
</applet> */
public class CBGroup extends Applet implements ItemListener {
String msg = "";
Checkbox Win98, winNT, solaris, mac;
CheckboxGroup cbg;
public void init() {
cbg = new CheckboxGroup();
Win98 = new Checkbox("Windows 98/XP", cbg, true);
winNT = new Checkbox("Windows NT/2000", cbg, false);
solaris = new Checkbox("Solaris", cbg, false);
mac = new Checkbox("MacOS", cbg, false);
add(Win98);
add(winNT);
add(solaris);
add(mac);
Win98.addItemListener(this);
winNT.addItemListener(this);
solaris.addItemListener(this);
mac.addItemListener(this); }
public void itemStateChanged(ItemEvent ie) { repaint(); }
// Display current state of the check boxes.
public void paint(Graphics g) {
msg = "Current selection: ";
msg += cbg.getSelectedCheckbox().getLabel();

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 15

g.drawString(msg, 6, 100);
}
}
Output generated by the CBGroup applet is shown in below. Notice that the
check boxes are now circular in shape.

2.6 Choice lists

 The Choice class is used to create a pop-up list of items from which the user may
choose. Thus, a Choice control is a form of menu. When inactive, a Choice
component takes up only enough space to show the currently selected item. When
the user clicks on it, the whole list of choices pops up, and a new selection can be
made. Each item in the list is a string that appears as a left-justified label in the
order it is added to the Choice object. Choice only defines the default constructor,
which creates an empty list. To add a selection to the list, call add(). It has this
general form:

 void add(String name)
 Here, name is the name of the item being added. Items are added to the list in the

order in which calls to add() occur.
 To determine which item is currently selected, you may call either getSelectedItem

() or getSelectedIndex(). These methods are shown here:
 String getSelectedItem()
 int getSelectedIndex()

 The getSelectedItem() method returns a string containing the name of the item.
getSelectedIndex() returns the index of the item. The first item is at index 0. By
default, the first item added to the list is selected.

 To obtain the number of items in the list, call getItemCount(). You can set the
currently selected item using the select() method with either a zero-based integer
index or a string that will match a name in the list. These methods are shown here:

 int getItemCount()
 void select(int index)
 void select(String name)

 Given an index, you can obtain the name associated with the item at that index by
calling getItem(), which has this general form:

 String getItem(int index)

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 16

 Here, index specifies the index of the desired item.
 Each time a choice is selected, an item event is generated. This is sent to any

listeners that previously registered an interest in receiving item event notifications
from that component. Each listener implements the ItemListener interface. That
interface defines the itemStateChanged() method. An ItemEvent object is supplied
as the argument to this method.

 Here is an example that creates two Choice menus. One selects the operating
system. The other selects the browser.
// Demonstrate Choice lists.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="ChoiceDemo" width=300 height=180>
</applet>
*/
public class ChoiceDemo extends Applet implements ItemListener {
Choice os, browser;
String msg = "";
public void init() {
os = new Choice();
browser = new Choice();
// add items to os list
os.add("Windows 98/XP");
os.add("Windows NT/2000");
os.add("Solaris");
os.add("MacOS");
// add items to browser list
browser.add("Netscape 3.x");
browser.add("Netscape 4.x");
browser.add("Netscape 5.x");
browser.add("Netscape 6.x");
browser.add("Internet Explorer 4.0");
browser.add("Internet Explorer 5.0");
browser.add("Internet Explorer 6.0");
browser.add("Lynx 2.4");
browser.select("Netscape 4.x");
// add choice lists to window
add(os);
add(browser);
// register to receive item events
os.addItemListener(this);
browser.addItemListener(this);
}
public void itemStateChanged(ItemEvent ie) {

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 17

repaint();
}
// Display current selections.
public void paint(Graphics g) {
msg = "Current OS: ";
msg += os.getSelectedItem();
g.drawString(msg, 6, 120);
msg = "Current Browser: ";
msg += browser.getSelectedItem();
g.drawString(msg, 6, 140);
}
}
Sample output is shown in below.

2.7 Lists
 The List class provides a compact, multiple-choice, scrolling selection list. Unlike

the Choice object, which shows only the single selected item in the menu, a List
object can be constructed to show any number of choices in the visible window. It
can also be created to allow multiple selections. List provides these constructors:

 List()
 List(int numRows)
 List(int numRows, boolean multipleSelect)

 The first version creates a List control that allows only one item to be selected at
any one time. In the second form, the value of numRows specifies the number of
entries in the list that will always be visible (others can be scrolled into view as
needed). In the third form, if multipleSelect is true, then the user may select two or
more items at a time. If it is false, then only one item may be selected. To add a
selection to the list, call add(). It has the following two forms:

 void add(String name)
 void add(String name, int index)

 Here, name is the name of the item added to the list. The first form adds items to
the end of the list. The second form adds the item at the index specified by index.
Indexing begins at zero. You can specify –1 to add the item to the end of the list.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 18

 For lists that allow only single selection, you can determine which item is currently
selected by calling either getSelectedItem() or getSelectedIndex(). These methods
are shown here:

 String getSelectedItem()
 int getSelectedIndex()

 The getSelectedItem() method returns a string containing the name of the item. If
more than one item is selected or if no selection has yet been made, null is
returned. getSelectedIndex() returns the index of the item. The first item is at index
0. If more than one item is selected, or if no selection has yet been made, –1 is
returned. It allow multiple selection, you must use either getSelectedItems() or
getSelectedIndexes(), shown here, to determine the current selections:

 String[] getSelectedItems()
 int[] getSelectedIndexes()

 getSelectedItems() returns an array containing the names of the currently selected
items. getSelectedIndexes() returns an array containing the indexes of the
currently selected items. To obtain the number of items in the list, call
getItemCount(). You can set the currently selected item by using the select()
method with a zero-based integer index. These methods are shown here:

 int getItemCount()
 void select(int index)

 Given an index, you can obtain the name associated with the item at that index by
calling getItem(), which has this general form:

 String getItem(int index)
 Here, index specifies the index of the desired item.
 To process list events, you will need to implement the ActionListener interface.

Each time a List item is double-clicked, an ActionEvent object is generated. Its
getActionCommand() method can be used to retrieve the name of the newly
selected item. Also, each time an item is selected or deselected with a single click,
an ItemEvent object is generated. Its getStateChange() method can be used to
determine whether a selection or deselection triggered this event.
getItemSelectable() returns a reference to the object that triggered this event. Here
is an example that converts the Choice controls in the preceding section into List
components, one multiple choice and the other single choice:
// Demonstrate Lists.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="ListDemo" width=300 height=180>
</applet>
*/
public class ListDemo extends Applet implements ActionListener {
List os, browser;
String msg = "";
public void init() {

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 19

os = new List(4, true);
browser = new List(4, false);
// add items to os list
os.add("Windows 98/XP");
os.add("Windows NT/2000");
os.add("Solaris");
os.add("MacOS");
// add items to browser list
browser.add("Netscape 3.x");
browser.add("Netscape 4.x");
browser.add("Netscape 5.x");
browser.add("Netscape 6.x");
browser.add("Internet Explorer 4.0");
browser.add("Internet Explorer 5.0");
browser.add("Internet Explorer 6.0");
browser.add("Lynx 2.4");
browser.select(1);
// add lists to window
add(os);
add(browser);
// register to receive action events
os.addActionListener(this);
browser.addActionListener(this);
}
public void actionPerformed(ActionEvent ae) {
repaint();
}
// Display current selections.
public void paint(Graphics g) {
int idx[];
msg = "Current OS: ";
idx = os.getSelectedIndexes();
for(int i=0; i<idx.length; i++)
msg += os.getItem(idx[i]) + " ";
g.drawString(msg, 6, 120);
msg = "Current Browser: ";
msg += browser.getSelectedItem();
g.drawString(msg, 6, 140);
}
}

 Sample output generated by the ListDemo applet is shown in below. Notice that the
browser list has a scroll bar, since all of the items won’t fit in the number of rows
specified when it is created.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 20

2.7 Using a TextField
 The TextField class implements a single-line text-entry area, usually called an edit

control. Text fields allow the user to enter strings and to edit the text using the
arrow keys, cut and paste keys, and mouse selections. TextField is a subclass of
TextComponent. TextField defines the following constructors:

 TextField()
 TextField(int numChars)
 TextField(String str)
 TextField(String str, int numChars)

 The first version creates a default text field. The second form creates a text field
that is numChars characters wide. The third form initializes the text field with the
string contained in str. The fourth form initializes a text field and sets its width.
TextField (and its superclass TextComponent) provides several methods that allow
you to utilize a text field. To obtain the string currently contained in the text field, call
getText(). To set the text, call setText(). These methods are as follows:

 String getText()
 void setText(String str)

 Here, str is the new string.
 The user can select a portion of the text in a text field. Also, you can select a

portion of text under program control by using select(). Your program can obtain
the currently selected text by calling getSelectedText(). These methods are shown
here:

 String getSelectedText()
 void select(int startIndex, int endIndex)

 getSelectedText() returns the selected text. The select() method selects the
characters beginning at startIndex and ending at endIndex–1. You can control
whether the contents of a text field may be modified by the user by calling
setEditable(). You can determine editability by calling isEditable(). These methods
are shown here:

 boolean isEditable()
 void setEditable(boolean canEdit)

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 21

 isEditable() returns true if the text may be changed and false if not. In setEditable(),
if canEdit is true, the text may be changed. If it is false, the text cannot be altered.
There may be times when you will want the user to enter text that is not displayed,
such as a password. You can disable the echoing of the characters as they are
typed by calling setEchoChar(). This method specifies a single character that the
TextField will display when characters are entered (thus, the actual characters
typed will not be shown). You can check a text field to see if it is in this mode with
the echoCharIsSet() method. You can retrieve the echo character by calling the
getEchoChar() method. These methods are as follows:

 void setEchoChar(char ch)
 boolean echoCharIsSet()
 char getEchoChar()

 Here, ch specifies the character to be echoed.

 Since text fields perform their own editing functions, your program generally will not
respond to individual key events that occur within a text field. However, you may
want to respond when the user presses ENTER. When this occurs, an action event
is generated.

 Here is an example that creates the classic user name and password screen:
// Demonstrate text field.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="TextFieldDemo" width=380 height=150>
</applet>
*/
public class TextFieldDemo extends Applet
implements ActionListener {
TextField name, pass;
public void init() {
Label namep = new Label("Name: ", Label.RIGHT);
Label passp = new Label("Password: ", Label.RIGHT);
name = new TextField(12);
pass = new TextField(8);
pass.setEchoChar('?');
add(namep);
add(name);
add(passp);
add(pass);
// register to receive action events
name.addActionListener(this);
pass.addActionListener(this);
}
// User pressed Enter.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 22

public void actionPerformed(ActionEvent ae) {
repaint();
}
public void paint(Graphics g) {
g.drawString("Name: " + name.getText(), 6, 60);
g.drawString("Selected text in name: "
+ name.getSelectedText(), 6, 80);
g.drawString("Password: " + pass.getText(), 6, 100);
}
}

 Sample output from the TextFieldDemo applet is shown in below.

2.8 Using a TextArea
 Sometimes a single line of text input is not enough for a given task. To handle

these situations, the AWT includes a simple multiline editor called TextArea.
Following are the constructors for TextArea:

 TextArea()
 TextArea(int numLines, int numChars)
 TextArea(String str)
 TextArea(String str, int numLines, int numChars)
 TextArea(String str, int numLines, int numChars, int sBars)

 Here, numLines specifies the height, in lines, of the text area, and numChars
specifies its width, in characters. Initial text can be specified by str. In the fifth form
you can specify the scroll bars that you want the control to have. sBars must be one
of these values:

 SCROLLBARS_BOTH SCROLLBARS_NONE
 SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

 TextArea is a subclass of TextComponent. Therefore, it supports the getText(),
setText(), getSelectedText(), select(), isEditable(), and setEditable() methods
described in the preceding section.

 TextArea adds the following methods:
 void append(String str)

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 23

 void insert(String str, int index)
 void replaceRange(String str, int startIndex, int endIndex)

 The append() method appends the string specified by str to the end of the current
text. insert() inserts the string passed in str at the specified index. To replace text,
call replaceRange(). It replaces the characters from startIndex to endIndex–1, with
the replacement text passed in str. Text areas are almost self-contained controls.
Your program incurs virtually no management overhead. Text areas only generate
got-focus and lost-focus events. Normally, your program simply obtains the current
text when it is needed.

 The following program creates a TextArea control:
// Demonstrate TextArea.
import java.awt.*;
import java.applet.*;
/*
<applet code="TextAreaDemo" width=300 height=250>
</applet>
*/
public class TextAreaDemo extends Applet {
public void init() {
String val = "There are two ways of constructing " +
"a software design.\n" +
"One way is to make it so simple\n" +
"that there are obviously no deficiencies.\n" +
"And the other way is to make it so complicated\n" +
"that there are no obvious deficiencies.\n\n" +
" -C.A.R. Hoare\n\n" +
"There's an old story about the person who wished\n" +
"his computer were as easy to use as his telephone.\n" +
"That wish has come true,\n" +
"since I no longer know how to use my telephone.\n\n" +
" -Bjarne Stroustrup, AT&T, (inventor of C++)";
TextArea text = new TextArea(val, 10, 30);
add(text);
}
}

 Here is sample output from the TextAreaDemo applet:

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 24

3 Introduction to event handling

3.1The Delegation Event Model
 The modern approach to handling events is based on the delegation event model,

which defines standard and consistent mechanisms to generate and process
events. Its concept is quite simple: a source generates an event and sends it to one
or more listeners. In this scheme, the listener simply waits until it receives an event.
Once received, the listener processes the event and then returns. The advantage
of this design is that the application logic that processes events is cleanly
separated from the user interface logic that generates those events. A user
interface element is able to “delegate” the processing of an event to a separate
piece of code.

 In the delegation event model, listeners must register with a source in order to
receive an event notification. This provides an important benefit: notifications are
sent only to listeners that want to receive them. This is a more efficient way to
handle events than the design used by the old Java 1.0 approach. Previously, an
event was propagated up the containment hierarchy until it was handled by a
component. This required components to receive events that they did not process,
and it wasted valuable time. The delegation event model eliminates this overhead.

 The following sections define events and describe the roles of sources and
listeners.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 25

3.1.1 Events
 In the delegation model, an event is an object that describes a state change in a

source. It can be generated as a consequence of a person interacting with the
elements in a graphical user interface. Some of the activities that cause events to
be generated are pressing a button, entering a character via the keyboard,
selecting an item in a list, and clicking the mouse. Many other user operations could
also be cited as examples.

 Events may also occur that are not directly caused by interactions with a user
interface. For example, an event may be generated when a timer expires, a counter
exceeds a value, software or hardware failure occurs, or an operation is completed.
You are free to define events that are appropriate for your application.

3.1.2 Event Sources

 A source is an object that generates an event. This occurs when the internal state
of that object changes in some way. Sources may generate more than one type of
event.

 A source must register listeners in order for the listeners to receive notifications
about a specific type of event. Each type of event has its own registration method.

 Here is the general form:

 public void addTypeListener(TypeListener el)
 Here, Type is the name of the event and el is a reference to the event listener. For

example, the method that registers a keyboard event listener is called
addKeyListener(). The method that registers a mouse motion listener is called
addMouseMotionListener().

 When an event occurs, all registered listeners are notified and receive a copy of the
event object. This is known as multicasting the event. In all cases, notifications are
sent only to listeners that register to receive them.

 Some sources may allow only one listener to register. The general form of such a
method is this:

 public void addTypeListener(TypeListener el)
 throws java.util.TooManyListenersException

 Here, Type is the name of the event and el is a reference to the event listener.
When such an event occurs, the registered listener is notified. This is known as
unicasting the event.

 A source must also provide a method that allows a listener to unregister an interest
in a specific type of event. The general form of such a method is this:

 public void removeTypeListener(TypeListener el)
 Here, Type is the name of the event and el is a reference to the event listener. For

example, to remove a keyboard listener, you would call removeKeyListener().
 The methods that add or remove listeners are provided by the source that

generates events. For example, the Component class provides methods to add and
remove keyboard and mouse event listeners.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 26

3.1.3 Event Listeners
 A listener is an object that is notified when an event occurs. It has two major

requirements.
 First, it must have been registered with one or more sources to receive notifications

about specific types of events. Second, it must implement methods to receive and
process these notifications.

 The methods that receive and process events are defined in a set of interfaces
found in java.awt.event. For example, the MouseMotionListener interface defines
two methods to receive notifications when the mouse is dragged or moved. Any
object may receive and process one or both of these events if it provides an
implementation of this interface.

 Many other listener interfaces are discussed later in this and other chapters.

3.2 Event Classes
 The classes that represent events are at the core of Java’s event handling

mechanism. Thus, we begin our study of event handling with a tour of the event
classes. As you will see, they provide a consistent, easy-to-use means of
encapsulating events. At the root of the Java event class hierarchy is EventObject,
which is in java.util. It is the superclass for all events. Its one constructor is shown
here:

 EventObject(Object src)
 Here, src is the object that generates this event.
 EventObject contains two methods: getSource() and toString(). The getSource()

method returns the source of the event. Its general form is shown here:
 Object getSource()

 As expected, toString() returns the string equivalent of the event. The class
AWTEvent, defined within the java.awt package, is a subclass of EventObject. It is
the superclass (either directly or indirectly) of all AWT-based events used by the
delegation event model. Its getID() method can be used to determine the type of
the event. The signature of this method is shown here:

 int getID()
 Additional details about AWTEvent are provided at the end of Chapter 22. At this

point, it is important to know only that all of the other classes discussed in this
section are subclasses of AWTEvent. To summarize:
■ EventObject is a superclass of all events.
■ AWTEvent is a superclass of all AWT events that are handled by the delegation
event model.

 The package java.awt.event defines several types of events that are generated by
various user interface elements.

3.2.1 The ActionEvent Class

 An ActionEvent is generated when a button is pressed, a list item is double-clicked,
or a menu item is selected. The ActionEvent class defines four integer constants

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 27

that can be used to identify any modifiers associated with an action event:
ALT_MASK, CTRL_MASK, META_MASK, and SHIFT_MASK. In addition, there is
an integer constant, ACTION_PERFORMED, which can be used to identify action
events.

 ActionEvent has these three constructors:
 ActionEvent(Object src, int type, String cmd)
 ActionEvent(Object src, int type, String cmd, int modifiers)
 ActionEvent(Object src, int type, String cmd, long when, int modifiers)

 Here, src is a reference to the object that generated this event. The type of the
event is specified by type, and its command string is cmd. The argument modifiers
indicates which modifier keys (ALT, CTRL, META, and/or SHIFT) were pressed
when the event was generated. The when parameter specifies when the event
occurred. The third constructor was added by Java 2, version 1.4.

 You can obtain the command name for the invoking ActionEvent object by using
the getActionCommand() method, shown here:

 String getActionCommand()
 For example, when a button is pressed, an action event is generated that has a

command name equal to the label on that button.
 The getModifiers() method returns a value that indicates which modifier keys (ALT,

CTRL, META, and/or SHIFT) were pressed when the event was generated. Its form
is shown here:

 int getModifiers()
 Java 2, version 1.4 added the method getWhen() that returns the time at which the

event took place. This is called the event’s timestamp. The getWhen() method is
shown here.

 long getWhen()
 Timestamps were added by ActionEvent to help support the improved input focus

subsystem implemented by Java 2, version 1.4.

3.2.2 The ItemEvent Class
 An ItemEvent is generated when a check box or a list item is clicked or when a

checkable menu item is selected or deselected. (Check boxes and list boxes are
described later in this book.) There are two types of item events, which are
identified by the following integer constants:

 DESELECTED The user deselected an item.
 SELECTED The user selected an item.

 In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED,
 that signifies a change of state. ItemEvent has this constructor:

 ItemEvent(ItemSelectable src, int type, Object entry, int state)
 Here, src is a reference to the component that generated this event. For example,

this might be a list or choice element. The type of the event is specified by type.
The specific item that generated the item event is passed in entry. The current state
of that item is in state.

 The getItem() method can be used to obtain a reference to the item that generated
an event. Its signature is shown here:

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 28

 Object getItem()
 The getItemSelectable() method can be used to obtain a reference to the

ItemSelectable object that generated an event. Its general form is shown here:
 ItemSelectable getItemSelectable()

 Lists and choices are examples of user interface elements that implement the
ItemSelectable interface. The getStateChange() method returns the state change
(i.e., SELECTED or DESELECTED) for the event. It is shown here:

 int getStateChange()

3.2.3 The KeyEvent Class
 A KeyEvent is generated when keyboard input occurs. There are three types of key

events, which are identified by these integer constants: KEY_PRESSED,
KEY_RELEASED, and KEY_TYPED. The first two events are generated when any
key is pressed or released. The last event occurs only when a character is
generated. Remember, not all key presses result in characters. For example,
pressing the SHIFT key does not generate a character.

 There are many other integer constants that are defined by KeyEvent. For example,
VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the
numbers and letters. Here are some others:
VK_ENTER VK_ESCAPE VK_CANCEL VK_UP
VK_DOWN VK_LEFT VK_RIGHT VK_PAGE_DOWN
VK_PAGE_UP VK_SHIFT VK_ALT VK_CONTROL

 The VK constants specify virtual key codes and are independent of any modifiers,
such as control, shift, or alt. KeyEvent is a subclass of InputEvent. Here are two of
its constructors:

 KeyEvent(Component src, int type, long when, int modifiers, int code)
 KeyEvent(Component src, int type, long when, int modifiers, int code, char

ch)
 Here, src is a reference to the component that generated the event. The type of the

event is specified by type. The system time at which the key was pressed is passed
in when. The modifiers argument indicates which modifiers were pressed when this
key event occurred.

 The virtual key code, such as VK_UP, VK_A, and so forth, is passed in code. The
character equivalent (if one exists) is passed in ch. If no valid character exists, then
ch contains CHAR_UNDEFINED. For KEY_TYPED events, code will contain
VK_UNDEFINED.

 The KeyEvent class defines several methods, but the most commonly used ones
are getKeyChar(), which returns the character that was entered, and getKeyCode(
), which returns the key code. Their general forms are shown here:

 char getKeyChar()
 int getKeyCode()

 If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED.
When a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

3.2.4 The MouseEvent Class

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 29

 There are eight types of mouse events. The MouseEvent class defines the
following integer constants that can be used to identify them:

 MOUSE_CLICKED The user clicked the mouse.
 MOUSE_DRAGGED The user dragged the mouse.
 MOUSE_ENTERED The mouse entered a component.
 MOUSE_EXITED The mouse exited from a component.
 MOUSE_MOVED The mouse moved.
 MOUSE_PRESSED The mouse was pressed.
 MOUSE_RELEASED The mouse was released.
 MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

 MouseEvent is a subclass of InputEvent. Here is one of its constructors.
 MouseEvent(Component src, int type, long when, int modifiers, int x, int y, int

clicks, boolean triggersPopup)
 Here, src is a reference to the component that generated the event. The type of the

event is specified by type. The system time at which the mouse event occurred is
passed in when. The modifiers argument indicates which modifiers were pressed
when a mouse event occurred. The coordinates of the mouse are passed in x and
y. The click count is passed in clicks. The triggersPopup flag indicates if this event
causes a pop-up menu to appear on this platform. Java 2, version 1.4 adds a
second constructor which also allows the button that caused the event to be
specified.

 The most commonly used methods in this class are getX() and getY(). These
return the X and Y coordinates of the mouse when the event occurred. Their forms
are shown here:

 int getX()
 int getY()

 Alternatively, you can use the getPoint() method to obtain the coordinates of the
mouse. It is shown here:

 Point getPoint()
 It returns a Point object that contains the X, Y coordinates in its integer members: x

and y.
 The translatePoint() method changes the location of the event. Its form is shown

here:
 void translatePoint(int x, int y)

 Here, the arguments x and y are added to the coordinates of the event.
 The getClickCount() method obtains the number of mouse clicks for this event. Its

signature is shown here:
 int getClickCount()

 The isPopupTrigger() method tests if this event causes a pop-up menu to appear
on this platform. Its form is shown here:

 boolean isPopupTrigger()
 Java 2, version 1.4 added the getButton() method, shown here.

 int getButton()

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 30

 It returns a value that represents the button that caused the event. The return value
will be one of these constants defined by MouseEvent.
NOBUTTON BUTTON1 BUTTON2 BUTTON3

 The NOBUTTON value indicates that no button was pressed or released.

3.3 Sources of Events

 Below table lists some of the user interface components that can generate the
events described in the previous section. In addition to these graphical user
interface elements, other components, such as an applet, can generate events. For
example, you receive key and mouse events from an applet. (You may also build
your own components that generate events.) In this chapter we will be handling
only mouse and keyboard events, but the following two chapters will be handling
events from the sources shown in following Table.
Event Source Description
Button Generates action events when the button is pressed.
Checkbox Generates item events when the check box is selected or

deselected.
Choice Generates item events when the choice is changed.
List Generates action events when an item is double-clicked;

generates item events when an item is selected or
deselected.

3.4 Event Listener Interface

 As explained, the delegation event model has two parts: sources and listeners.
Listeners are created by implementing one or more of the interfaces defined by the
java.awt.event package. When an event occurs, the event source invokes the
appropriate method defined by the listener and provides an event object as its
argument. Below table lists commonly used listener interfaces and provide a brief
description of the methods that they define. The following sections examine the
specific methods that are contained in each interface.
Interface Description
ActionListener Defines one method to receive action events.
ItemListener Defines one method to recognize when the state of an item

changes.
KeyListener Defines three methods to recognize when a key is pressed,

released, or typed.
MouseListener Defines five methods to recognize when the mouse is

clicked, enters a component, exits a component, is
pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is
dragged or moved.

3.4.1 The ActionListener Interface

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 31

 This interface defines the actionPerformed() method that is invoked when an action
event occurs. Its general form is shown here:

 void actionPerformed(ActionEvent ae)

3.4.2 The ItemListener Interface
 This interface defines the itemStateChanged() method that is invoked when the

state of an item changes. Its general form is shown here:
 void itemStateChanged(ItemEvent ie)

3.4.3 The KeyListener Interface
 This interface defines three methods. The keyPressed() and keyReleased()

methods are invoked when a key is pressed and released, respectively. The
keyTyped() method is invoked when a character has been entered. For example, if
a user presses and releases the A key, three events are generated in sequence:
key pressed, typed, and released. If a user presses and releases the HOME key,
two key events are generated in sequence: key pressed and released.

 The general forms of these methods are shown here:
 void keyPressed(KeyEvent ke)
 void keyReleased(KeyEvent ke)
 void keyTyped(KeyEvent ke)

3.4.4 The MouseListener Interface
 This interface defines five methods. If the mouse is pressed and released at the

same point, mouseClicked() is invoked. When the mouse enters a component, the
mouseEntered() method is called. When it leaves, mouseExited() is called. The
mousePressed() and mouseReleased() methods are invoked when the mouse is
pressed and released, respectively.

 The general forms of these methods are shown here:
 void mouseClicked(MouseEvent me)
 void mouseEntered(MouseEvent me)
 void mouseExited(MouseEvent me)
 void mousePressed(MouseEvent me)
 void mouseReleased(MouseEvent me)

3.4.5 The MouseMotionListener Interface
 This interface defines two methods. The mouseDragged() method is called multiple

times as the mouse is dragged. The mouseMoved() method is called multiple times
as the mouse is moved. Their general forms are shown here:

 void mouseDragged(MouseEvent me)
 void mouseMoved(MouseEvent me)

4 Introduction to JDBC

4.1 Java Database Connectivity

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 32

 JDBC (Java Database Connectivity) is a java API which enables the java programs
to execute SQL statements. It is an application programming interface that defines
how a java programmer can access the database in tabular format from Java code
using a set of standard interfaces and classes written in the Java programming
language.

 JDBC has been developed under the Java Community Process (JCP) that allows
multiple implementations to exist and be used by the same application. JDBC
provides methods for querying and updating the data in Relational Database
Management system such as SQL, Oracle etc.

 The Java application programming interface provides a mechanism for dynamically
loading the correct Java packages and drivers and registering them with the
JDBC Driver Manager that is used as a connection factory for creating JDBC
connections which supports creating and executing statements such as SQL
INSERT, UPDATE and DELETE. Driver Manager is the backbone of the jdbc
architecture.

 In short JDBC helps the programmers to write java applications that manage these
three programming activities:
1. It helps us to connect to a data source, like a database.
2. It helps us in sending queries and updating statements to the database
3. Retrieving and processing the results received from the database in terms of
answering query.

4.2 JDBC has four Components:

1. The JDBC API: The JDBC API provides programmatic access to relational data
from the Java programming language.

The JDBC API is part of the Java platform, which includes the Java Standard
Edition (Java SE) and the Java Enterprise Edition (Java EE). The JDBC 4.0 API is
divided into two packages: java.sql and javax.sql. Both packages are included in
the Java SE and Java EE platforms.

2. JDBC Driver Manager: The JDBC DriverManager class defines objects which can
connect Java applications to a JDBC driver.

3. JDBC Test Suite — The JDBC driver test suite helps you to determine that JDBC
drivers will run your program.

4. JDBC-ODBC Bridge — The Java Software bridge provides JDBC access via
ODBC drivers.

4.3 Java Database Connectivity Steps
 Before you can create a java jdbc connection to the database, you must first import

the java.sql package.
 import java.sql.*; The star (*) indicates that all of the classes in the package

java.sql are to be imported.
 There are following six steps involved in building a JDBC application:

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 33

1) Import the packages: Requires that you include the packages containing the JDBC
classes needed for database programming. Most often, using import java.sql.* will
suffice.

2) Register the JDBC driver: Requires that you initialize a driver so you can open a
communications channel with the database.

3) Open a connection: Requires using the DriverManager.getConnection()method to
create a Connection object, which represents a physical connection with the
database.

4) Execute a query: Requires using an object of type Statement for building and
submitting an SQL statement to the database.

5) Extract data from result set: Requires that you use the appropriate
ResultSet.getXXX() method to retrieve the data from the result set.

6) Clean up the environment: Requires explicitly closing all database resources
versus relying on the JVM's garbage collection.

4.4 JDBC Driver
 Driver types are used to categorize the technology used to connect to the

database. The driver class can be load by calling Class.forName() with the Driver
class name as an argument. Once loaded, the Driver class creates an instance of
itself. A client can connect to Database Server through JDBC Driver. Since most of
the Database servers support ODBC driver therefore JDBC-ODBC Bridge driver is
commonly used.

 The return type of the Class.forName (String ClassName) method is “Class”. Class
is a class in java.lang package.

try
{
Class.forName(”sun.jdbc.odbc.JdbcOdbcDriver”); //Or any other driver
}
catch(Exception x)
{

System.out.println(“Unable to load the driver class!”);
}

 Types of JDBC drivers
1. JDBC-ODBC bridge plus ODBC driver, also called Type 1.
2. Native-API, partly Java driver, also called Type 2.
3. JDBC-Net, pure Java driver, also called Type 3.
4. Native-protocol, pure Java driver, also called Type 4.

4.4.1 TYPE – 1: JDBC-ODBC Bridge
 This driver is implemented in the sun.jdbc.odbc.JdbcOdbcDriver class and comes

with the Java 2 SDK, Standard Edition. Type 1 is the simplest of all but platform
specific i.e only to Microsoft platform.

 This driver converts JDBC method calls into ODBC function calls. Type 1 drivers
are written in Native code.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 34

4.4.2 TYPE – 2 JDBC-Native API or Native Driver
 In a Type 2 driver, JDBC API calls are converted into native C/C++ API calls which

are unique to the database.
 This type of driver converts JDBC calls into calls to the client API for that database.
 The native API should change if the Database is changed because it is specific to a

database.
 The Oracle Call Interface (OCI) driver is an example of a Type 2 driver.

4.4.3 Type 3: JDBC-Net pure Java or Middleware Driver

 The type 3 driver is written entirely in Java. In a Type 3 driver, a three-tier approach
is used to accessing databases.

 The JDBC clients use standard network sockets to communicate with an
middleware application server. The socket information is then translated by the
middleware application server into the call format required by the DBMS, and
forwarded to the database server.

 This kind of driver is extremely flexible, since it requires no code installed on the
client and a single driver can actually provide access to multiple databases.

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 35

4.4.4 TYPE – 4: Native-protocol or Pure Java driver or Pure Driver

 The type 4 driver is written completely in Java and is hence platform independent. It
is installed inside the Java Virtual Machine of the client.

 It communicates directly with vendor's database through socket connection. This is
the highest performance driver available for the database and is usually provided
by the vendor itself.

 MySQL's Connector driver is a Type 4 driver. Because of the proprietary nature of
their network protocols, database vendors usually supply type 4 drivers. Oracle thin
driver - oracle.jdbc.driver. OracleDriver which connect to jdbc:oracle:thin URL
format.

5 Working with Graphics

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 36

The AWT supports a rich assortment of graphics methods. All graphics are drawn
relative to a window. This can be the main window of an applet, a child window of an
applet, or a stand-alone application window. The origin of each window is at the top-left
corner and is 0,0. Coordinates are specified in pixels. All output to a window takes place
through a graphics context. A graphics context is encapsulated by the Graphics class
and is obtained in two ways:
 It is passed to an applet when one of its various methods, such as paint() or
update(), is called.
! It is returned by the getGraphics() method of Component.

The Graphics class defines a number of drawing functions. Each shape can be drawn
edge-only or filled. Objects are drawn and filled in the currently selected graphics color,
which is black by default. When a graphics object is drawn that exceeds the dimensions of
the window, output is automatically clipped. Let’s take a look at several of the drawing
methods.

Drawing Lines
Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY)
drawLine() displays a line in the current drawing color that begins at startX,startY and
ends at endX,endY. The following applet draws several lines:

import java.awt.*;
import java.applet.*;
/* <applet code="Lines" width=300 height=200>

</applet>*/
public class Lines extends Applet {

public void paint(Graphics g) {
g.drawLine(0, 0, 100, 100);
g.drawLine(0, 100, 100, 0);
g.drawLine(40, 25, 250, 180);
g.drawLine(75, 90, 400, 400);
g.drawLine(20, 150, 400, 40);
g.drawLine(5, 290, 80, 19);
}

}
Sample output from this program is shown here:

Drawing Rectangles
The drawRect() and fillRect() methods display an outlined and filled rectangle,
respectively. They are shown here:

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 37

void drawRect(int top, int left, int width, int height)void fillRect(int top, int left, int width, int
height)

The upper-left corner of the rectangle is at top,left. The dimensions of the rectangle are
specified by width and height. To draw a rounded rectangle, use drawRoundRect() or
fillRoundRect(), both shown here:

void drawRoundRect(int top, int left, int width, int height,int xDiam, int yDiam)JAVA
void fillRoundRect(int top, int left, int width, int height,int xDiam, int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at
top,left. The dimensions of the rectangle are specified by width and height. The diameter
of the rounding arc along the X axis is specified by xDiam. The diameter of the rounding
arc along the Y axis is specified by yDiam.

The following applet draws several rectangles:
import java.awt.*;
import java.applet.*;
/*
<applet code="Rectangles" width=300 height=200>
</applet>
*/
public class Rectangles extends Applet {
public void paint(Graphics g) {
g.drawRect(10, 10, 60, 50);
g.fillRect(100, 10, 60, 50);
g.drawRoundRect(190, 10, 60, 50, 15, 15);
g.fillRoundRect(70, 90, 140, 100, 30, 40);
}
}
Sample output from this program is shown here:

Drawing Ellipses and Circles
To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). These methods are
shown here:

void drawOval(int top, int left, int width, int height)
void fillOval(int top, int left, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specifiedby
top,left and whose width and height are specified by width and height.To draw a circle,
specify a square as the bounding rectangle.

The following program draws several ellipses:

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 38

// Draw Ellipses
import java.awt.*;
import java.applet.*;
/*
<applet code="Ellipses" width=300 height=200>
</applet>
*/

public class Ellipses extends Applet {
public void paint(Graphics g) {
g.drawOval(10, 10, 50, 50);
g.fillOval(100, 10, 75, 50);
g.drawOval(190, 10, 90, 30);
g.fillOval(70, 90, 140, 100);
}

}
Sample output from this program is shown here:

Drawing Arcs
Arcs can be drawn with drawArc() and fillArc(), shown here:

void drawArc(int top, int left, int width, int height, int startAngle, int sweepAngle)

void fillArc(int top, int left, int width, int height, int startAngle,int sweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by top,left and
whose width and height are specified by width and height. The arc is drawn from
startAngle through the angular distance specified by sweepAngle. Angles are specified
in degrees. Zero degrees is on the horizontal, at the three o’clock position. The arc is
drawn counterclockwise if sweepAngle is positive, and clockwise if sweepAngle is
negative. Therefore, to draw an arc from twelve o’clock to six o’clock, the start angle
would be 90 and the sweep angle 180.
The following applet draws several arcs:

// Draw Arcs
import java.awt.*;
import java.applet.*;
/*
<applet code="Arcs" width=300 height=200>
</applet>
*/
public class Arcs extends Applet {

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 39

public void paint(Graphics g) {
g.drawArc(10, 40, 70, 70, 0, 75);
g.fillArc(100, 40, 70, 70, 0, 75);
g.drawArc(10, 100, 70, 80, 0, 175);
g.fillArc(100, 100, 70, 90, 0, 270);
g.drawArc(200, 80, 80, 80, 0, 180);
}
}
Sample output from this program is shown here:

Drawing Polygons
It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(),
shown here:

void drawPolygon(int x[], int y[], int numPoints)
void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and y
arrays. The number of points defined by x and y is specified by numPoints. There are
alternative forms of these methods in which the polygon is specified by a Polygon object.
The following applet draws an hourglass shape:

// Draw Polygon
import java.awt.*;
import java.applet.*;
/*
<applet code="HourGlass" width=230 height=210>
</applet>
*/

public class HourGlass extends Applet {

public void paint(Graphics g) {
int xpoints[] = {30, 200, 30, 200, 30};
int ypoints[] = {30, 30, 200, 200, 30};
int num = 5;
g.drawPolygon(xpoints, ypoints, num);
}

Sample output from this program is shown here:

US04CBA23 UNIT-IV OOP THROUGH JAVA

VP& RPTP SCIENCE COLLEGE 40

	US04CBCA23 - UNIT - I.pdf
	US04CBCA23 - UNIT - II.pdf
	US04CBCA23 - UNIT - III.pdf
	US04CBCA23 - UNIT - IV.pdf

