IONIC EQUILIBRIUM

\star ELECTROLYTES : Compounds which dissociate into ions, when dissolved in water are called Electrolytes. e.g. $\mathrm{NaCl}, \mathrm{HCl}$, $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{H}_{2} \mathrm{O}$, etc.
\star STRONG ELECTROLYTES : Compounds which get dissociated completely into ions in aqueous solution are called Strong electrolytes. e.g. Strong acids : $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}$, and strong bases: $\mathrm{NaOH}, \mathrm{KOH}$, etc.
\star WEAK ELECTROLYTES : Compounds which get ionized slightly into ions in aqueous solution are called Weak electrolytes.e.g.Weak acids : $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{HCN}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ and Weak bases: $\mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$, etc.

Que: Explain Self-Ionisation of water.

Ans:

\leadsto If sensitive Instrument is used, it is observed that water conducts electrical current to a small extent. Therefore water is a very WEAK ELECTROLYTE. This indicates that water is slightly dissociated into ions.
\leadsto The formation of $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ and $\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$ ions in small concentrations by the dissociation of water is called SELF - IONIZATION of water.
\leadsto There exists an equilibrium between undissociated $\mathrm{H}_{2} \mathrm{O}_{(1)}$ molecules and ions $\left(\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right.$ and $\left.\mathrm{OH}^{-}{ }_{(\mathrm{aq})}\right)$ formed due to dissociation. Thus,

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+} \text {and } \mathrm{OH}^{-}(\mathrm{aq})
$$

NOTE : The number of water molecules attached to H^{+}is uncertain. Therefore hydrogen ion is represented by either $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ or $\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$.
Que : What is meant by Ionic Product of Water? Derive the equation for it.
[MARCH'99] (3 MARKS)
Ans:
\leadsto Self-ionization of water can be represented as:

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

\leadsto The equilibrium constant of this reaction is expressed as under :

$$
\mathrm{K}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]_{(\ell)}}
$$

\rightarrow Suppose at $25^{\circ} \mathrm{C}$, 1 litre (1000 gms) of water is taken,
\rightarrow Concentration of water $=\frac{\text { No. of Molesof water }}{\text { Litreof Water }}=\frac{1000 \mathrm{gm} / 18 \mathrm{gm} / \mathrm{mole}}{1 \mathrm{~L}}=55.55 \mathrm{M}$
\rightarrow Concentration of undissociated water $\left(\mathrm{H}_{2} \mathrm{O}_{(I)}\right)=55.55 \mathrm{M}$
 equal to original concentration (C_{o})]

$$
\begin{equation*}
\therefore \mathrm{K}_{\mathrm{eq}} \times 55.55=\left[\mathrm{H}^{+}\right][\mathrm{OH}] \tag{1}
\end{equation*}
$$

$\rightarrow \mathrm{K}_{\mathrm{w}}$ is known as IONIC PRODUCT OF WATER. The value of K_{w} at $25^{\circ} \mathrm{C}$ is 1×10^{-14}.
\leadsto Self - ionization of water is an endothermic reaction, this increase in temperature of water shifts the equilibrium in the forward direction. Therefore, the concentrations of $\mathrm{H}^{+}{ }_{(\mathrm{aq})}$ and $\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$ in water increase with the rise in temperature and hence K_{w} increases with increase in temperature of water.
$\rightarrow \quad$ Now at $25^{\circ} \mathrm{C}$

$$
\begin{equation*}
K_{W}=1 \times 10^{-14} \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\therefore 1 \times 10^{-14}= & {\left[\mathrm{H}^{+}\right]^{2}=\left[\mathrm{OH}^{-}\right]^{2} } \\
& {\left[\because \mathrm{H}^{+}{ }_{(\text {aq })} \text { and } \mathrm{OH}^{-}{ }_{(\text {aq })} \text { are formed in } 1: 1\right. \text { mole }} \\
& \text { ratio due to self-ionization of water, }\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{]}\right] \\
& \text {in equation (1)] }
\end{aligned}
$$

$$
\therefore\left[\mathrm{H}^{+}\right]=[\mathrm{OH}]=1 \times 10^{-7} \mathrm{M}
$$

\rightarrow Thus in pure water $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, hence pure water is neutral.
Que : Discuss the ionization of electrolytes in aqueous solutions.

Ans:

\rightarrow IONIZATION : The process of forming ions from molecules of compound in aqueous solution.
\leadsto DEGREE OF IONIZATION : The fraction of dissolved compound ionized. e.g. 0.08 mole of a compound dissolved in water and 0.02
mole of it is ionized, the degree of ionization of the compound is $0.02 / 0.08=0.25$
[MARCH'97]

$\rightarrow \quad$ Compounds producing ions in aqueous solutions are of two kinds

(1) IONIC SOLIDS :
\rightarrow Compounds having ions as their constituents in solid state e.g. NaCl . Such compounds are known as Ionic solids. When such solids dissolve in water, ions are not formed but the ions which are held firmly in their positions in the lattice, of the compound are set free e.g.
$\mathrm{Na}^{+} \mathrm{Cl}^{-}{ }_{(\mathrm{s})} \longrightarrow \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\text {aq })}$
\rightarrow Though ionic solids are completely ionized, their concentrated solutions contain some ion-pairs, e.g. $\mathrm{Na}^{+} \mathrm{Cl}^{-}$. Such ion pairs do not conduct electric current as they are electrically neutral.
\rightarrow Thus two kinds of processes occur in concentrated aqueous solutions of strong electrolytes.
(i) A process producing ions capable of conducting electric current,
(ii) inspite of ionization process which has occurred in aqueous solution, a process of forming ion pairs incapable of conducting electric current.
\rightarrow A process giving rise to ions capable of conducting electric current is described as 'DISSOCIATION'.
\rightarrow A process which denotes the formation of ions capable and incapable (ion-pairs) of conducting electric current is described as 'IONIZATION'.

\rightarrow (2) POLAR COMPOUNDS :

\rightarrow Some molecular compounds dissociated into ions, when they dissolve in water.
\rightarrow Such compounds have polar bonds between parts producing positive ion and negative ion.
\rightarrow This polar bond breaks in aqueous medium and the atom having higher electronegativity acquires one unit of negative charge and the atom having lower electronegativity acquires one unit of positive charge.

IONIZATION OF WEAK ELECTROLYTES (ACIDS AND BASES)

\leadsto Strong electrolytes like $\mathrm{HCl}, \mathrm{HNO}_{3}, \mathrm{NaOH}, \mathrm{KOH}$ ionize completely in their aqueous solutions.
\leadsto Weak electrolytes like $\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{NH}_{3}$ ionize slightly in their aqueous solutions. Therefore, there exists an equilibrium between ions and unionized molecules in aqueous solutions of weak electrolytes. This kind of ionization process is reversible and is shown by \Longleftrightarrow sign in the equation e.g.

1. $\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Leftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
2. $\mathrm{HCOOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Leftrightarrow \mathrm{HCOO}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$
3. $\mathrm{ClCH}_{2} \mathrm{COOH}_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow \mathrm{ClCH}_{2} \mathrm{COO}^{-}{ }_{\text {(aq) }}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
4. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{COO}^{-}{ }_{(\text {aq) }}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$
5. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}{ }_{(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}$
6. $\mathrm{HCN}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow \mathrm{CN}^{-}{ }_{(\text {aq) }}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}$
7. $\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{NH}_{4}^{+}{ }_{(\text {aq) }}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
8. $\mathrm{CH}_{3} \mathrm{NH}_{2}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\text {aq })}$
9. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}{ }^{+}{ }_{(\text {aq })}+\mathrm{OH}^{-}{ }_{\text {(aq) }}$
10. $\mathrm{N}_{2} \mathrm{H}_{4}{ }_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{N}_{2} \mathrm{H}_{5}{ }^{+}{ }_{(\text {aq })}+\mathrm{OH}^{-}{ }_{\text {(aq) }}$
11. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}{ }_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}{ }_{(\mathrm{aq)}}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}$
12. $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{(\text {aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{NH}_{2}{ }^{+}{ }_{\text {(aq) }}+\mathrm{OH}^{-}{ }_{\text {(aq) }}$
\leadsto The equilibrium constant of an equilibrium between ions of weak acid and unionized weak acid is expressed as K_{a}.
\leadsto The equilibrium constant for weak base is denoted as K_{b}.
NOTE : $K_{a}=$ Ionization constant of an weak acid.
$K_{b}=$ Ionization constant of an weak base.
Que: Derive the equation for K_{a} when weak acid is dissolved in water. OR
Derive the relation between K_{a} (Ionization constant) and the concentration C_{0} of a Weak acid in water. [MARCH 96,97]
\leadsto Following equilibrium exists in the aqueous solution of weak acid HA :

$$
\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}+\mathrm{A}^{-}{ }_{(\mathrm{aq})}
$$

\leadsto The equilibrium constant K of this equilibrium can be given by

$$
\begin{equation*}
K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]\left[\mathrm{H}_{2} \mathrm{O}\right]_{(\ell)}} \tag{1}
\end{equation*}
$$

\leadsto Here the decrease in concentration of water due to the dissolution of acid is negligible in comparison with the concentration of pure water. Therefore $\left[\mathrm{H}_{2} \mathrm{O}\right]$ in the above equation can be regarded as constant combining this constant concentration term with K , a new constant K_{a} is written as under.

$$
\begin{equation*}
\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]_{(\ell)}=\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \tag{2}
\end{equation*}
$$

\rightarrow where K_{a} is ionisation or dissociation constant of weak acid.
\rightarrow As only slight amount of acid dissociates into ions in such solutions, the concentration of undissociated acid approximately equal to initial concentration C_{0} of the acid. Moreover, the concentrations of positive ions and negative ions are equal (neglecting $\mathrm{H}_{3} \mathrm{O}^{+}$produced by self - ionisation of water) i.e. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{A}^{-}\right]$

$$
\begin{aligned}
& \therefore \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\mathrm{C}_{\mathrm{O}}} \\
& \therefore \mathrm{~K}_{\mathrm{a}} \cdot \mathrm{C}_{0}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} \\
& \therefore\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\sqrt{\mathrm{K}_{\mathrm{a}} \cdot \mathrm{C}_{\mathrm{O}}}
\end{aligned}
$$

\leadsto This formula indicates the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$produced by ionisation of weak acid.
Que : Derive the equation for K_{b} when the weak base $\mathrm{NH}_{3}\left(\operatorname{or} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}\right.$, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}, \mathrm{~N}_{2} \mathrm{H}_{4}, \mathrm{CH}_{3} \mathrm{NH}_{2}$ etc.) is dissolved in water.
OR

Derive the relation between the K_{b} and the concentration C_{0} of the weak base $\left(\mathrm{NH}_{3}\right)$. [October 97] (3 marks)

Ans:

\leadsto Following equilibrium exists in the aqueous solution of weak base NH_{3}

$$
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

\leadsto The equilibrium constant :

$$
K=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]_{(\ell)}}
$$

\leadsto Here the decrease in concentration of water due to the dissolution of base is negligible in comparison with the concentration of pure water. Therefore, $\left[\mathrm{H}_{2} \mathrm{O}\right]_{(1)}$ in the above equation is regarded constant. Combining this constant concentration term with K , a new constant K_{b} is,

$$
\mathrm{K}\left[\mathrm{H}_{2} \mathrm{O}\right]_{(\ell)}=\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
$$

\rightarrow where K_{b} is ionisation constant or dissociation constant of weak acid.
\leadsto As weak base $\left[\mathrm{NH}_{3}\right]$ ionizes slightly in such solutions, the concentration of unionized base in aqueous solution is nearly equal to the initial concentration C_{O}.Moreover $\left[\mathrm{NH}_{4}{ }^{+}\right]=[\mathrm{OH}]$, as the concentration of OH^{-}produced by self-ionization of water is negligible.

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{OH}^{-}\right]}{\mathrm{C}_{\mathrm{O}}} \\
& \therefore \mathrm{~K}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{o}}=\left[\mathrm{OH}^{-}\right]^{2} \\
& \therefore\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{K}_{\mathrm{b}} \cdot \mathrm{C}_{\mathrm{O}}}
\end{aligned}
$$

\leadsto This formula indicates $\left[\mathrm{OH}^{7}\right]$ produced by ionization of weak base.
Que: Derive the equation of ionization constant for the aqueous solution of dimethyl amine.
[October 98] (3 marks)
\leadsto Importance of $K_{a} \& K_{b}$:
\leadsto Higher the value of K_{a}, stronger the acid.
\leadsto Higher the value of K_{b}, stronger the base.
Que: Write a note on pH scale.
\leadsto Sorenson devised a new scale to express concentration of H^{+}(aq) in aqueous solution. This new scale is known as pH scale.
$\xrightarrow{\rightarrow} \mathrm{pH}$ scale :
\rightarrow Definition : "Negative logarithm of the molarity of the $\mathrm{H}_{3} \mathrm{O}^{+}$ion in aqueous solution is called pH .

$$
\begin{equation*}
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \tag{4}
\end{equation*}
$$

\rightarrow Definition : "Negative logarithm of the molarity of the OH^{-}ion in aqueous solution is called pOH .

$$
\mathrm{pOH}=-\log [O H]
$$

\longrightarrow If the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in solution decreases, pH of the solution increases.
\leadsto Values of pH and pOH at $25^{\circ} \mathrm{C}$
\rightarrow 1. For pure water: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{\top}\right]=1 \times 10^{-7} \mathrm{M}$ $\mathrm{pH}=\mathrm{pOH}=-\log \left(1 \times 10^{-7}\right)=7.0$
\rightarrow 2. For acidic solutions: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>1 \times 10^{-7} \mathrm{M} \&[\mathrm{OH}]<10^{-7} \mathrm{M}$ $\mathrm{pH}<7$ \& $\mathrm{pOH}>7$
\rightarrow 3. For basic solutions: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<1 \times 10^{-7} \mathrm{M} \&[\mathrm{OH}]>10^{-7} \mathrm{M}$ $\mathrm{pH}>7 \& \mathrm{pOH}<7$
\rightarrow 4. For any aqueous solution: $\mathrm{pH}+\mathrm{pOH}=14$ pH scale can be represented as under :
\longleftarrow Acidity Increases \longrightarrow Basicity Increases \longrightarrow

$\star \star$ DETERMINATION (CALCULATION) OF $\mathrm{pH}:$

\leadsto In the aqueous solution of strong acid, concentration of strong acid is equal to the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in solution. Hence pH value can be calculated directly from the concentration of strong acid.
\leadsto In the aqueous solution of strong base, concentration of strong base is equal to the concentration of OH^{-}in the solution. Hence pOH value can be calculated directly from the concentration of strong base. From this pH can be calculated.
\leadsto From the concentration of weak acid, and its K_{a} value, molar concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$can be calculated which is used to calculate pH value.
\leadsto From the concentration of weak base, and its K_{b} value, molar concentration of OH^{-}can be calculated, which is used to calculate pOH and thereby pH can be calculated.
$\leadsto \mathrm{pH}$ can be measured accurately by pH meter.
\leadsto Approximate value of pH of solution can be determined by using pH paper of indicator.
$\star \star \mathrm{pH}$ OF CONCENTRATED SOLUTION :
\leadsto Usually pH values of most of solutions are in the range 1-14.
\leadsto However, if $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is less than $0.1 \mathrm{M}, \mathrm{pH}$ would be less than one e.g. pH of 1 M HCl solution is near to zero and pH of 2 M HCl is less than zero. So pH is not generally useful to express concentration of concentrated solution.
\leadsto In concentrated solution neutral solution neutral ion - pairs are formed. Morever, there is proximity of ions. Hence concentrated solution behave non - ideally.
\rightarrow As a result the actual concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$in solution having high molarity cannot be calculated on the basis of molarity of solution. Hence correct pH values of concentrated solution are not obtained.

USEFULNESS OF pH :

1. pH scale magnifies small values of concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$.
2. The extent of acid - base titration can be demonstrated graphically by using pH scale.
3. The useful pH range of acid - base indicator can be explained using pH scale.

Que : Write the operational definition of an acid and a base. (Robert Boyle theory)

Ans:

\leadsto An Acid 1. is sour in taste.
 2. Turns blue litmus red.

3. Is neutralised by alkali. 4 . Evolves $\mathrm{H}_{2(\mathrm{~g})}$ when reacts with metals.
\leadsto A Base 1. Is bitter in taste. 2. Turns red litmus blue.
4. Is neutralised by acid.

Que : Discuss different theories put forward to explain acid - base reactions.
$\star \star$ 1. ARRHENIUS THEORY OF ACID - BASE : (1880-1890)
\leadsto Definition : The substance which produce H^{+}when dissolved in water is acid and the substance which produce OH^{-}when dissolved in water is base.
\leadsto He attributed properties of acids to H^{+}and properties of bases to OH^{-}
\rightarrow It was believed that these compounds dissociated reversibly into ions in aqueous solutions and therefore, their aqueous solutions showed electrical conductivity and chemical reactivity.
\leadsto Limitations : [Q. Give reasons - Arrhenius theory of acid-base has met some difficulties] [MARCH 99] (1.5 Marks)
\rightarrow 1. This theory does not explain the form of \mathbf{H}^{+}(proton) in aqueous solutions.
\rightarrow 2. Some compounds do not have hydroxyl ions $\left(\mathrm{OH}^{-}\right)$in the formulae; yet they behave like as base. e.g. $\mathrm{NH}_{3(\mathrm{~g})}$, behaves like a base in its reaction with $\mathrm{HCl}_{(\mathrm{g})}$. Similarly $\mathrm{Na}_{2} \mathrm{CO}_{3}$ does not have OH^{-}but behaves as base.
$\rightarrow \quad 3$. This theory does not explain the role of water.
\leadsto Usefulness : This theory is useful to compare relative strengths of different acids and bases.

Que : Write Lowry - Bronsted theory of Acids and Bases, explain giving two examples and write a note on conjugate acid and conjugate base.
(March 98)
Ans:
LOWRY BRONSTED THEORY OF ACIDS AND BASES (1925) :
\leadsto Definition : "Acids were compound which donated protons and bases were compound which accepted protons during reactions".
\rightarrow According to this definition, an acid-base reaction is a process in which proton transfer occurs, e.g.

Proton Donor	Proton Acceptor			Proton Donor		Proton Acceptor
$\mathrm{HCl}_{\text {(aq) }}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	\Longleftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$	+	$\mathrm{Cl}^{-}{ }_{\text {(aq) }}$
$\mathrm{CH}_{3} \mathrm{COOH}_{(\text {(aq) }}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	\Longleftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}$(aq)	+	$\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{\text {(aq) }}$
$\mathrm{HNO}_{3(1)}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	\Leftrightarrow	$\mathrm{NO}_{3}^{-}{ }_{\text {(aq) }}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {aq) }}$
$\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{I})}$	+	$2 \mathrm{H}_{2} \mathrm{O}_{(1)}$	\Longleftrightarrow	$\mathrm{SO}_{4}^{-2}{ }_{\text {(aq) }}$	+	$2 \mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {aq) }}$
$\mathrm{H}_{2} \mathrm{O}_{(1)}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	\Longleftrightarrow	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{\text {(aq) }}$	+	OH^{-}(aq)
$\mathrm{H}_{2} \mathrm{O}_{(1)}$	+	$\mathrm{NH}_{3(\mathrm{~g})}$	\Longleftrightarrow	OH^{-}(aq)	+	$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$

\leadsto From above illustrations it can be said that a reaction between acid and base produce a base and a acid.
\leadsto An acid produces conjugate base by giving up proton and a base produces a conjugate acid by gaining a proton.
$\rightarrow \quad$ i.e. Any Acid $-\mathrm{H}^{+}=$conjugate base \& base $+\mathrm{H}^{+}=$conjugate acid.
$\star \star$ CONJUGATE ACID - BASE : [MARCH 96, 98, OCTOBER 96, 97]
\rightarrow "The pair of acid-base having difference of one proton is known as conjugate acid-base."
\leadsto According to this theory :
\rightarrow 1. Strong acid has high tendency to give up proton so its conjugate base will be weak.
\rightarrow 2. Strong base has high tendency to accept proton, so its conjugate acid will be weak.

[Q. Complete | $\mathrm{H}_{3} \mathrm{ASO}_{4}+2 \mathrm{H}_{2} \mathrm{O}(1) \Longleftrightarrow \quad$ (Acid-1) |
| :--- |

\rightarrow This theory helps us
\rightarrow 1. To measure the strength of different acids i.e. tendency to donate protons, water is selected as a base. On the basis of this quantitative expression of tendency to loose proton by acid is given by K_{a} value.
\rightarrow 2. To measure the strength of different acids i.e. tendency to accept protons, water is selected as a base. On the basis of this quantitative expression of tendency to accept proton by base is given by $\mathbf{K}_{\mathbf{b}}$ value.

\leadsto Limitations :

\rightarrow 1. According to this theory, proton transfer is essential, otherwise reaction is not considered as acid-base reaction. But in fact there are some acid - base reaction in which proton transfer does not take place e.g. $\mathrm{BF}_{3}+\mathrm{F}^{-} \longrightarrow \mathrm{BF}_{4}{ }^{-}$

Acid Base
\rightarrow 2. This theory does not cover the reactions taking place in absence of solvent.
$\star \star$ LEWIS THEORY OF ACID - BASE : (1923)
\leadsto Definition : 'Acid is a compound which accept electron pair during reaction and base is a compound which donates and electron pair during reactions'.
e.g.

Acid	Base
$\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{NH}_{3(\mathrm{aq)}}$	$\Longleftrightarrow \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}{ }_{(\mathrm{aq})}$
$\mathrm{BF}_{3}+\mathrm{F}^{-}$	$\Longleftrightarrow \mathrm{BF}_{4}^{-}$
$\mathrm{BF}_{3}+\mathrm{NH}_{3}$	$\Longleftrightarrow \mathrm{~F}_{3} \mathrm{~B} \longleftarrow \mathrm{NH}_{3}$
$\mathrm{Ag}^{+}{ }_{\text {(aq) }}+2 \mathrm{CN}^{-}+(\mathrm{aq)}$	$\Longleftrightarrow \mathrm{Ag}(\mathrm{CN})_{2}^{-}{ }_{\text {(aq) }}$

\rightarrow In above reactions, $\mathrm{NH}_{3}, \mathrm{~F}^{-}$and CN^{-}donate electron pair hence they are Lewis base while Ag^{+}and BF_{3} accept electron pair hence they are Lewis acids.
\rightarrow Thus reactant acting as Lewis acid may be cation or electron deficient molecule (e.g. $\mathrm{Ag}^{+}, \mathrm{Cu}^{+2}, \mathrm{BF}_{3}$) and a reactant act as a lewis base may be anion or a molecule having non-bonding electron-pair with the atom (e.g. $\mathrm{NH}_{3}, \mathrm{~F}^{-}, \mathrm{CN}^{-}, \mathrm{OH}^{-}, \mathrm{Cl}^{-}, \mathrm{NH}_{2}^{-}$)
[October 98]

$\star \star$ ILLUSTRATION OF LEWIS ACID - BASE REACTION : (Explain Hydration) [October 98] (2 Marks)

$\rightarrow 1$. When salt is dissolved in water, ions formed in solution become hydrated. This process of hydration is an acid - base reaction. e.g. Lewis acid base reaction between Na^{+}and $\mathrm{H}_{2} \mathrm{O}$ as under :
$\leadsto 2$. Ions and molecules acting as ligands in the formation of complex salts are Lewis Bases and metal ions bonding to ligands in the formation of complex salts are Lewis Acids.

$\star \star$ REASONING :

\leadsto Lowry Bronsted bases are Lewis bases, Lowry Bronsted acids are Lewis acids.
\rightarrow All Lewis bases donate electron pair and owing to non-bonding electron pair Lewis bases can accept proton, hence can be considered as Lowry bronsted base. e.g. $\mathrm{NH}_{3}, \mathrm{Cl}^{-}, \mathrm{OH}^{-}$etc. are Lewis bases as well as Lowry Bronsted bases.
\leadsto Lewis acids accept electron pair during reaction. But some of those cannot donate proton, hence cannot be considered as Lowry Bronsted acids e.g. $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{Ag}^{+}$etc accept electron pair, hence they are Lewis acid, but BF_{3} and Ag^{+}cannot donate protons, hence they are not Lowry - Bronsted acid.
\longrightarrow Thus, all Lowry - Bronsted bases are Lewis bases and all Lowry Bronsted acids are Lewis acids but all Lewis acids are not Lowry - Bronsted acids.

Que: Write a note on Acid - base titrations and pH scale.
[March 98] (3 marks)
Ans:
\leadsto A titration is one of the experimental methods used in laboratories to determines the concentrations of one solution (unknown) from the known concentration of other solution (using $N_{1} V_{1}=N_{2} V_{2}$)
\leadsto In acid - base titrations, a definite volume of solution (acid or base) is taken in pipette which is completely neutralised with other solution (base or acid) of burette.
\leadsto In order to detect the stage at which the reaction is completed two or three drops of a solution of a third reagent capable of changing its colour in the process of neutralisation, called indicator.
\leadsto By knowing volume of second solution, the unknown concentration of solution can be calculated.
\leadsto During acid-base titration, change in pH of the solution is very. slow in the starting of reaction. But pH undergoes a large change during last stage. On the basis of large change in pH , indicator is selected in acid-base titration which can be explained as under :

Volume of Solution of NaOH added from burette	Percentage of neutralization	pH of solution of HCI taken in pipette
0.0 ml	0%	1
5.0 ml	50%	1.4
9.9 ml	99.99%	4.3
10.0 ml	100.00%	7.00 (Complete neutralization)
10.1 ml	100.10%	10.7

\leadsto Thus, pH changes very rapidly from 4.3 to 10.70 during 99.9% 100.1 \% titration stage (phenolphthalein can be used as an indicator because useful pH range of phenolphthalein is $8-10$)
\leadsto This range of pH decreases, if the concentration of HCl is less than 0.1 M . Therefore, it is essential to have certain minimum concentrations of solutions used in titration; too dilute solutions cannot be titrated successfully.
[Q.What is the change in the value of pH during 99.9\%-100\% acid - base titration stage]
[October 98] (1 mark)
Que: Write a note on : HYDROLYSIS OF SALTS in aqueous solutions.
Ans:
\leadsto Aqueous solution of salts are either ACIDIC, BASIC OR NEUTRAL.

	SALT	SOLUTION	ILLUSTRATION
1	Strong acid - strong base	Neutral	$\mathrm{KNO}_{3}, \mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{KCl}$
2	Strong acid - weak base	Acidic	$\mathrm{CuSO}_{4}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{FeCl}$
3	Weak acid - strong base	Basic	$\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{3} \mathrm{PO}_{3}, \mathrm{CH}_{3} \mathrm{COONa}$
4	Weak acid - weak base	Netural	$\mathrm{HCOONH}_{4},\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{3} \mathrm{Al}$

\leadsto HYDROLYSIS : lons formed from salts react with ions $\left(\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right.$ or $\mathrm{OH}^{-}(\mathrm{aq})$) produced from water, reaction is called hydrolysis.

\rightarrow 1. Hydrolysis of salt of strong base - weak acid ($\mathrm{CH}_{3} \mathrm{COONa}$)

Suppose salt MA produced by a reaction between a strong base (MOH) and a weak acid (HA) is dissolved in water.

The following equilibrium exists in water.

$$
\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{\text {(aq) }}
$$

Salt MA ionise completely in aqueous solution :

$$
M A \Longleftrightarrow M^{+}+A^{-}
$$

$\rightarrow \quad$ Now salt MA reacts with $\mathrm{H}_{2} \mathrm{O}$ as under :

$$
\begin{gathered}
\mathrm{MA}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{MOH}+\mathrm{HA} \\
\text { salt } \\
\mathrm{M}_{(\mathrm{aq})}^{+}+\mathrm{A}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(1)}
\end{gathered} \stackrel{\text { strong Base }}{ } \Longleftrightarrow \mathrm{M}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{\text {(aq) }}^{-} \mathrm{HA}
$$

(Removing spectator ions)

$$
\mathrm{A}_{\text {(aq) }}^{-}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{HA}_{(\mathrm{aq)}}+\mathrm{OH}^{-}(\mathrm{aq)}
$$

\rightarrow As HA is weak acid, it ionises slightly. Therefore, the concentration of A present along with H^{+}would be very low. When salt dissolves in water A^{-}ions are formed in large concentration. As a result, they combine with H^{+}ions produced by self - ionization of water and form undissociated HA. This disturbs the equilibrium in water. As a result, according to Le chateliers's principle, the equilibrium of water shifts in the forward direction and produces more H^{+}and OH^{-}ions. However, as H^{+}are removed by A^{-}, the concentration of OH^{-}ions exceeds the concentration of H^{+}ions in the new state of equilibrium and therefore solution becomes basic.
[Q. An aqueous solution of sodium formate is basic] (March 97) (2 marks)
\rightarrow 2. HYDROLYSIS OF strong acid (HA) and weak base (MOH) $\left(\mathrm{NH}_{4} \mathrm{Cl}\right)$
\rightarrow Suppose salt MA is produced by reaction between strong acid (HA) and weak base (MOH) dissolved in water.
\rightarrow The following equilibrium exists in water $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \Longleftrightarrow \mathrm{H}_{(\mathrm{aq})}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-}$
\rightarrow Salt MA ionize completely in water (aqueous solution) $M A \Longleftrightarrow M^{+}+A_{(a q)}^{-}$
$\rightarrow \quad$ Now salt MA reacts with water $\left(\mathrm{H}_{2} \mathrm{O}_{(1)}\right)$ as under

$$
\begin{aligned}
& \mathrm{MA} \\
& \text { Salt } \\
& \mathrm{H}_{2} \mathrm{O}_{(1)} \text { Water }
\end{aligned} \underset{\text { WeakBase }}{\mathrm{H}^{2}} \mathrm{MOH}+\underset{\text { StrongAcid }}{\mathrm{HA}}
$$

$$
\mathrm{M}_{(\mathrm{aq})}^{+}+\mathrm{A}_{(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Longleftrightarrow \mathrm{MOH}+\mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq)})}^{-}
$$

(Removing spectator ions)

$$
\mathrm{M}_{(\mathrm{aq})}^{+}+\mathrm{H}_{2} \mathrm{O}_{(1)} \Longleftrightarrow \mathrm{MOH}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

\rightarrow As MOH is weak base, it ionizes slightly. The concentration of M^{+} present along with OH^{-}would be very low. When salt dissolves in water M^{+}are formed in large concentration which combines with OH^{-}to give MOH (undissociated). This reaction disturbs the equilibrium in water. When the net reaction reaches new state of equilibrium, the concentration of H^{+}exceeds the concentration OH^{-}and the solution becomes acidic.
[Q.Write the effect of aqueous solution of CaCl_{2} on litmus paper] (Oct 98)
OR
[Q.An aqueous solution of FeCl_{3} is acidic.] [Oct 96] (1.5 marks)
\rightarrow HYDROLYSIS CONSTANT $\left(K_{h}\right)$: The equilibrium constant of hydrolysis reaction is known as hydrolysis constant $\left(\mathrm{K}_{\mathrm{h}}\right)$.

1. For the salt formed from strong base and weak acid,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{~K}_{\mathrm{a}}} \text { where, } \mathrm{K}_{\mathrm{a}} & =\text { ionization constant of acid \& } \\
\mathrm{K}_{\mathrm{w}} & =\text { ionic product of water. }
\end{aligned}
$$

2. For salt formed from strong acid and weak base,

$$
K_{h}=\frac{K_{w}}{K_{b}}
$$

where, $\mathrm{K}_{\mathrm{b}}=$ ionization constant of acid \&

$$
K_{w}=\text { ionic product of water. }
$$

Que : Explain and illustrate solubility product. [March 97] (2 marks)

Ans:

\leadsto SPARINGLY SOLUBLE SALTS : Salts which form aqueous saturated solution, having less than 0.01 M concentration are called sparingly soluble salts.
[Oct. 96, March 98] (1mark)
\leadsto If a saturated solution of such salts is in contact with a solid salt, there exists an equilibrium between the solid salt and its ions in the solution.

$$
\mathrm{MA}_{(\mathrm{s})} \Longleftrightarrow \mathrm{M}^{+}{ }_{(\mathrm{aq})}+\mathrm{A}_{(\mathrm{aq})}^{-}
$$

\leadsto Now as the concentration of saturated solution of sparingly soluble salt is low, there is no possibility of presence of undissociated salt in the solution.

\leadsto DERIVATION OF SOLUBILITY PRODUCT OF SPARINGLY

 SOLUBLE SALTS (K_{sp}):\rightarrow Let MA be the sparingly soluble salt.

$$
\begin{aligned}
& \mathrm{MA}_{(\mathrm{s})} \Longleftrightarrow \mathrm{M}_{(\mathrm{aq)}}^{+}+\mathrm{A}_{(\mathrm{aq})}^{-} \\
& \mathrm{K}=\frac{\left[\mathrm{M}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{MA}]_{(\mathrm{s})}} \\
& \therefore \mathrm{K}_{(\mathrm{sp})}=\left[\mathrm{M}^{+}\right]\left[\mathrm{A}^{-}\right]
\end{aligned}
$$

eg.

1. $\mathrm{AgCl}_{(\mathrm{s})} \Longleftrightarrow \mathrm{Ag}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$

$$
\begin{aligned}
& K=\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]}{\left[\mathrm{AgCl}_{(\mathrm{s})}\right.} \quad \therefore \mathrm{K} \cdot[\mathrm{AgCl}]_{(\mathrm{s})}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \\
& \therefore \mathrm{K}_{(\mathrm{sp})}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]
\end{aligned}
$$

2. $\mathrm{CaF}_{2(\mathrm{~s})} \Longleftrightarrow \mathrm{Ca}^{+2}{ }_{\text {(aq) }}+\mathrm{A}_{\text {(aq) }}^{-}$

$$
\begin{aligned}
& K=\frac{\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}}{\left[\mathrm{CaF}_{2}\right]_{(\mathrm{s})}} \quad \therefore \mathrm{K} \cdot\left[\mathrm{CaF}_{2}\right]_{(\mathrm{s})}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
\therefore & K_{(\mathrm{sp})}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}
\end{aligned}
$$

\leadsto SIGNIFICANCE OF K ${ }_{\mathrm{sp}}$:

[March 98] (1 mark)
\rightarrow (i) From the value of K_{sp}, the condition necessary for quantitative precipitation of positive ion of the salt from its solution can be attained.
\rightarrow (ii) From the value of $K_{s p}$, the solubility of sparingly soluble salt can be known.
\rightarrow (iii) From the value of K_{sp} of different salts having similar formula, their solubility can be compared.
\leadsto EXPERIMENTAL INFORMATION ABOUT SOLUBILITY OF SALT :
$\rightarrow \quad$ 1. All salts of $\mathrm{Na}^{+}, \mathrm{K}^{+}$and NH_{4}^{+}, are soluble in water.
$\rightarrow \quad 2$. All nitrates are soluble in water.
\rightarrow 3. All compounds formed by bonding of inorganic negative ion with H^{+}are soluble in water.
\rightarrow 4. All sulphates, except $\mathrm{PbSO}_{4}, \mathrm{CaSO}_{4}$, and BaSO_{4}, and SrSO_{4}, are soluble in water.
$\rightarrow \quad$ 5. All chlorides, except $\mathrm{AgCl}, \mathrm{HgCl}_{2}$ and CuCl_{2} are soluble in water.
\rightarrow 6. Sulphides of alkali metals and alkaline earth metals are soluble in water. Sulphides of other metals (heavy) are sparingly soluble in water.
\rightarrow 7. Hydroxides of alkali metals, barium and radium are water soluble.
\rightarrow 8. Carbonates, phosphates and sulphates of alkali metals and radium are water - soluble.

Que : Explain and illustrate : Common ion effect.

[October 96] (3 marks)

Ans:

\leadsto An equilibrium exists between undissociated molecules of weak electrolytes and its ions, if the electrolyte is dissolved in water. Similarly, if a saturated solution of a salt is in contact with the solid salt, an ionic equilibrium between the solid salt and its ions in the solution exist.
\leadsto If another electrolyte having one of the ions the same are present in the solution, is added to the saturated solution, the equilibrium in the solution gets disturbed.
\leadsto According to the Le - chatelier's principle, the reverse process is favoured to reach the new state of equilibrium. This effect is known as COMMON ION EFFECT.
e.g.

1. The following equilibrium exists in aqueous solution of $\mathrm{CH}_{3} \mathrm{COOH}$.
$\mathrm{CH}_{3} \mathrm{COOH}_{\text {(aq) }} \Longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}_{\text {(aq) }}^{-}+\mathrm{H}^{+}{ }_{\text {(aq) }} \quad$ (Weak electrolyte)
\leadsto If $\mathrm{CH}_{3} \mathrm{COONa}$ is added to this solution, the concentration of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ ion increases, as $\mathrm{CH}_{3} \mathrm{COONa}$ is a strong electrolyte. This distrurbs the above equilibrium. i.e.

\rightarrow To reach again the state of equilibrium some $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions combine with H^{+}ions and produce undissociated $\mathrm{CH}_{3} \mathrm{COOH}$. This effect is called Common ion effect.
\rightarrow If a small amount of HCl is added to the solution, the addit ion of common ion H^{+}shifts the equilibrium in the reverse direction as under:

2. The following equilibrium exists in saturated solution of AgCl (Sparingly soluble salt)

\leadsto Addition of small quantity of $\mathrm{NaCl}_{(\mathrm{s})}$ to this solution increases the concentration of $\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}$. Therefore, some of Cl^{-}combine with $\mathrm{Ag}^{+}{ }_{(\mathrm{aq})}$ (Le - Chatlier's Principle) and precipitate AgCl . Thus due to common ion $\left(\mathrm{Cl}^{-}\right)$effect, solubility of AgCl decreases.
\rightarrow If $\mathrm{HCl}_{(\mathrm{g})}$ is passed through saturated solution of NaCl the concentration of $\mathrm{Cl}^{-}{ }_{\text {(aq) }}$ increases (Common ion effect). This result in the precipitation of $\mathrm{NaCl}_{(\mathrm{s})}$ i.e.
[March 96] (2 marks)

Que : Explain application of Common ion effect.

Ans:
\longrightarrow (i) Useful in qualitative analysis.
\leadsto (ii) To precipitate or to decrease the solubility of salt (as discussed above). e.g.
$\leadsto 1$. Precipitation of Cu^{+2} as CuS from $\mathrm{Cu}^{+2} \& \mathrm{Zn}^{+2}$ solution.
$\rightarrow \quad$ If $\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$ is passed through a solution containing Cu^{+2} and Zn^{+2} after adding small quantity of HCl to the solution, only CuS precipitates,

ZnS does not precipitate. The degree of ionisation decreases in presence of HCl . i.e.

\rightarrow The concentration of S^{2-} ions the solution becomes very low under the influence of common ion $\left(\mathrm{H}^{+}\right)$. As the solubility of CuS is very low compared to the solubility of $\mathrm{ZnS}\left(\mathrm{K}_{\text {sp(Cus) }}<\mathrm{K}_{\mathrm{sp}(\mathrm{ZnS})}\right)$, only CuS precipitates by keeping very low concentration of S^{2-} ions.
\leadsto 2. Precipitation of Gr. III A metal ions only using $\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$ [Oct.97)
\rightarrow To precipitate hydroxides of only $\mathrm{Al}^{+3}, \mathrm{Fe}^{+2}, \mathrm{Fe}^{+3} \& \mathrm{Cr}^{+3}$ in Gr . III A of qualitative analysis, $\mathrm{NH}_{4} \mathrm{Cl}$ solution is added to the test solution before $\mathrm{NH}_{4} \mathrm{OH}$ solution. As a result the following equilibrium shifts in reverse direction due to common ion NH_{4}^{+}(Le-chatelier's principle). This decreases the concentration of OH^{-}to a large extent. As a result, the hydroxides of ions of Gr. III B, IV and Mg^{+2} do not precipitate in Gr. III A.

$$
\left.\begin{array}{ll}
\mathrm{NH}_{(4)} \mathrm{OH} & \mathrm{OH}^{-}+ \\
\mathrm{NH}_{4}^{+} \\
\mathrm{NH}_{(4)} \mathrm{Cl} & \mathrm{Cl}^{-}+ \\
\mathrm{NH}_{4}^{+}
\end{array}\right) \text {Common ions }
$$

\rightarrow As the solubilities of hydroxides of Gr. III A are very low, only hydroxides of Gr . III A precipitate by $\mathrm{NH}_{4} \mathrm{OH}$ in the presence of $\mathrm{NH}_{4} \mathrm{Cl}$.

Dr. RAJESH HARISH PARAB

ASSOCIATE PROFESSOR

CHEMISTRY DEPARTMENT

V P \& R P T P SCIENCE COLLEGE

VALLABH VIDYANAGAR
ANAND

