190

T pROGRAMMING THE gqq5

dire ;
pe set Or reset usin

d of this chapter:

(5;' The -logic operations cannot be performed
- The individua] bits in the accumulator can

. } e en
See Questions and Assignments 20-29 at th

S ——

BRANCH OPERATIONS

ons because lhey allow the mi-

nconditionally or under certaj;

. ; cti
The branch instructions are the most powerful ms'tr}?er u
eit versatility of a cor,.

CIoprocessor to change the sequence of a program, bty e
{est conditions. These instructions are the key to the fle
utes machine codes from on.

puter.
. . ; ine; it exec
The microprocessor is a sequential machine; 1t the MICTOPIOCESSOr 10 20 10 -

Memory location to the next. Branch instructions mstrui_tnues executing it codes
iff . - contl .
different memory location, and the microprocessor €o either specified e\

ation 18
from that new location. The address of the new memory IOCdUOThe branch SaStaicti
plicitly or supplied by the microprocessor or by extra hardware.

N

are classified in three categories:

1. Jump instructions -
2. Call and Return instructions
3. Restart instructions

This section is concerned with applications of Jump instructions. The Call .

Return instructions are associated with the subroutine technique and will be discussed i
Chapter 9; Restart instructions are associated with the interrupt technique and will be di.-

cussed in Chapter 12.
The Jump instructions specify the memory location explicitly. They are 3-bvte in-

structions: one byte for the operation code, followed by a 16-bit memory address. Jump
instructions are classified into two categories: Unconditional Jump and Conditional Jump

6.41 Unconditional Jump
The 8085 instruction set includes one unconditiong] Jump instruction. The uncondition:!
Jump instruction enables the programmer to set up continuous loops.

INSTRUCTION
Opcode Operand Description
JMP 16-bit Jump

L) This is a 3-byte instruction

O The sec ¢ ird bytes if
‘s LO‘I‘ld ind third bytes specity the 16-bit memon
address. However, (he second byte
..q;x‘z?mcs the low-order ang e third byte spec-
ifies the high-order memaory address =

¢

Scanned with CamScanner

INTRODUCTION TO 8085 INSTRUCTIONS

For example, to instruct the microprocessor to go to the memory location 2000H,
the mnemonics and the machine code entered will be as follows:

Machine Code Mnemonics
C3 JMP 2000H
v/ 00 |
20

Note the sequence of the machine code. The 16-bit memory address of the jump Jo-
cation is entered in the reverse order, the low-order byte (00H) first, followed by the high-
order byte (20H). The 8085 is designed for such a reverse sequence. The jump location
can also be specified using a label. While writing a program, you may not know the ex-
act memory location to which a program sequence should be directed. In that case, the
memory address can be specified with a label (or a name). This is particularly useful and
necessary for an assembler. However, you should not specify both a label and its 16-bit
address in a Jump instruction. Furthermore, you cannot use the same label for different
memory locations. The next illustrative program shows the use of the Jump instruction.

Scanned with CamScanner

/

/

. gram.

v T AMUNC W LS RMINA. RMAv O u[Wirs
.) outp
Monitors the input port continuously. The

Silions.
isions based on cer-

o ec .
6.43 Conditional Jumps . rocessor t0 maket.cé operations, flip-flopg
Conditiona] Jump instructions allow the “E:;Oligic and ari_thfgle Jl ump instructions check
tain conditions indicated by the flags. gitions- The C 10n e the sequence of a pro-

(flags) are set or reset to reflect data con !
the flag conditions and make decisions to chang

ondit

FLAGS ‘ iliary Carry) is used internally,
The 8085 flag register has five flags, one of ‘f’hwh (?ux
The other four flags used by the Jump instructions ar

1. Carry ﬁag
2. Zero flag
3. Sign flag
4. Parity flag
gre

Two Jump instructions are associated with each flag. The Sequenccflz.t(i)(fnézlii)lél(?j‘:sre ;T
can be changed either because the condition is present or because the condi g :
For example, while adding the numbers you can change the program sequence erther be-
cause the carry is present (JC = Jump On Carry) or because the carry is absent (JNC =

Jump On No Carry).

INSTRUCTIONS
yte instructions; the second byte

All conditional Jump instructions in the 8085 are 3-b
y address, and the third byte specifies the

specifies the low-order (line number) memor
high-order (page number) memory address. The following instructions transfer the pro-

gram sequence to the memory location specified under the given conditions:

Opcode Operand Description
JC 16-bit, Jump On Carry (if result generates ca (=1
| i ates carry ; Y = 1)
INC 16-bit Jump On No Carry (CY = 0) i
17 16-bit Jump On Zero (if result ig zer
‘ it Oand Z =
INZ 16-bit Jump On No Zero (Z=0) ' “=h
1P 16-bit Jump On Plus (if D, = 0 ang S'=0)
M]6—b}t Jump On Minys (f Dy =, and S =Y
IPE l6-b'1t Jump On Evep Parity (p = 1) =
0 [6-bit Jump On Odg Parity (p = 0))

Scanned with CamScanner

T R AT T T

INTRODUCTION TO 8085 INSTRUCTIONS // 193

All the Jump instru.ctions are listed here for an overview. The Zero and Carry flags
and related Jump instructions are used frequently. They are illustrated in the following ex-
amples. j

6.44 Mlustrative Program: Testing of the Carry Flag

\/pROBLEM STATEMENT

Load the hexadecimal numbers 9BH and A7H in registers D and E, respectively, and add

the numbers. If the sum is greater than FFH, display 01H at output PORTO; otherwise,
display the sum. .~ '

PROBLEM ANALYSIS AND FLOWCHART
The problem can be divided into the following steps:

1. Load the numbers in the registers. Myl D, 9BH
2. Add the numbers. D Y .
3. Check the sum. MYLl, = , #A§FMA

VIs the sum > FFH?

' | . and €
! I / TRC »mevmi—
YES NO vy Py ol H

| | mepLa ouT oo¥

4. Get ready to Go to Step 5 - /
display 01 to display the sum ¥ .

5. Display.
6. End.

FLOWCHART AND ASSEMBLY LANGUAGE PROGRAM
The six steps listed above can be converted into a flowchart and assembly language pro-
gram as shown in Figure 6.10.

Step 3 is a decision-making block. In a flowchart, the decision-making process is
represented by a diamond shape. It is important to understand how this block is translated

into the assembly language program. By examining the block carefully you will notice
the following:

L. The question is: Is there a Carry?

2. If the answer is no, change the sequence of the program. In the assembly language this
is equivalent to Jump On No Carry—INC.

Scanned with CamScanner

i S i
R T USRS ————
e s . -

4

194

—y

PROGRAMMING ,,)

Bie
ot

’-\ (Start)

Load MVI D, 9BH
Step 1 | Numbers MVI E, ATH
in Rogisters
Add MOV A, D
Step2 |\ umbors ADD E

\/ Step 3 No — {NC DSPLAY

Yo
Get Ready

Step 4 to Display MVI A, 01H
"~ Oln ' ;

1 .‘\
\

—* DSPLAY: OUT 00H

HLT e

FIGURE 6.10 |
Flowchart and Assembly Language Program to Test Carry F'lag

3. Now the next question is where 1o cha
n 4 o
exact location is not known, but j i lubegfcctlhlggi(}?:\nce‘to Step.S. At this pomn: ™
4, The next step in the sequence is 4, Ge ready 1o dis ;i’
5. After completing the straight line sequence, trang| tpgy byte 01H, .
port and halt. ; ale Step 5 and Step 6: Display « "

MACHINE CODE WITH MEMéRY ADD
Assuming your R/W memory be RESSES

gins a2
can be translated as follows: 000H, the Preceding assembly language prog™

Memory Machine

Address ne

A ress — Code Labe Mﬂemonics"
16 . orasmonies g
6n - START: MVIDORH
AT . MVIEATH

Scanned with CamScanner

INTROpUCTION TO 8085 INSTRUCTIONS

\,/

2004
2005
2006
2007
2008
2009
200A
200B
200C
200D

78A MOV AD

D?‘) ADD E

” JNC DSPLAY
X

3E MVI A,01H
01

D3 DSPLAY: OUT 00H

00 '

76 | HLT

_ While translating into the machine code, we leave memory locations 2007H and
2008H blank because the exact location of the transfer is not known. What is known is
that two bytes should be reserved for the 16-bit address. After completing the straight line

sequence, we know the memory address of the label DSPLAY; i.e., 200BH. This address
must be placed in the reversed order as shown:

2007
2008

0B Low-order: Line Number
20 High-order: Page Number

USING THE INSTRUCTION JUMP ON CARRY (JC)

Now the question remains: Can the same problem be solved by using the instruction Jump
On Carry (JC)? To use instruction JC, exchange the places of the answers YES and NO

that the program sequence is changed if there is a Carry. This flowchart has two-end

., to the question: Is there a Carry? The flowchart will be as in Figure 6.11, and it shows

points; thus it will require a few more instructions than that of Figure 6.10. In this partic-
ular example, it is unimportant whether to use instruction JC or JNC, but in most cases
the choice is made by the logic of a problem.

FIGURE 6.11

Flowchart for the Instruction Jump

On Carry

g

.| Display Sum

Scanned with Cam\Scanner

195

WRITING ASSEMBLY LANGUAGE PROGRAMS _iu

Communicating with a microcomputer—giving it commands to perform a task and
watching it perform them-—is exciting. However, one can be uneasy communicating in
strange mnemonics and hexadecimal machine codes. This feeling is like the uneasiness
one has when beginning to speak a foreign language. How do we learn to communicate
with a microcomputer in its assembly language? By using a few mnemonics at a time
such as the mnemonics for Read the switches and Display the data. This chapter has in-
troduced a group of basic instructions that can command the 8085 m
form simple tasks.

After we know a few instructions, how do we be
gr-zm, no r}rllatter.how l.arge, begins with mnemonics.
s sl the work of 3 team. In ot whail® S0 HE Witing of large

. . : on, the 8085 instructi -4 large program
ferent instructions, some of them used quite frequently 1 set containg only 74 dif-

1Croprocessor to pef-

Eu:i tq write a program? Any pro-
n 5 o .
Just as severa) persons con-

ughts. A giVen task <h to Write a program, one

ntly. This jg called the nou(lld be broken down into
10dular geci

4 €sign approach.

Scanned with CamScanner

INTRODUCTION TO 8088 INSTRUCTIONS

6.51 Getting Started

riting 4 program is equivale T
w uengc o perform ;lml‘(/dlﬁnl F() giving specific commands to the microprocessor in a
seq a4 a task. The italicized words provide clues to writing & program. Let
us examine these terms.

O Perform a Task. What is the task you are asking it to do?
O Sequence. What 1s the sequence you want it to follow?
O Commands. What are the commands (instruction set) it can understand?

These terms can be translated into steps as follows:

Step 1: Read the problem carefully.
Step 2: Break it down into small steps.
Step 3: Represent these small steps in a possible sequence with a flowchart—a plan of
attack.
Step 4: Translate each block of the flowchart into appropriate mnemonic instructions.
Step 5: Translate mnemonics into the machine code.
Step 6: Enter the machine code in memory and execute. Only on rare occasions is a
| program successfully executed on the first attempt.
Step 7: Start troubleshooting (see Section 6.6, “Debugging a Program”).

These steps are illustrated in the next section.

Scanned with CamScanner

_~" DEBUGGING A PROGRAM

—

Debugging a program 1s Sijmilar to troubleshooting hardware, but it is much more difficult
and cumbersome. It 1s easy to poke and pinch at the components in 4 circuit, but, in a pro-
gram, the result is gener al’!)’ binary? either it works orit dées not work. Wh,en it’ does not
work, very few clues alert you to what exactly went wrong. Therefore, it is essential to
search carefully f(?r the errors in the program logic, machine codes, anci execution.

The debugging process can be divided into two parts: static debugging and dynamic
debugging.

\/ Static debugging is similar to visual inspection of a circuit board; it is done by a
paper-and-pencil check of a flowchart and machine code. Dynamic debugging involves
observing the output, or register contents, following the execution of each instruction (the
single-step technique) or of a group of instructions (the breakpoint technique). Dynamic
debugging will be discussed in the next chapter.

6.61 Debugging Machine Code

Translating the assembly language to the machine code is similar to building a circuit
from a schematic diagram; the machine code will have errors just as would the circuit

board. The following errors are common:

Selecting a wrong code.
Forgetting the second or third byte of an instruction.

Specifying the wrong jump location.
Not reversing the order of high and low bytes in a Jump instruction.

‘Writing memory addresses in decimal, thus specifying wrong jump locations.

Ur By o

m for controlling manufacturing processes listed in Section 6.53 has sev-

The progra € .
cted before entering the machine code in

eral of these errors. These errors must be corre
the R/W memory of your system.

Scanned with CamScanner

PROGRAMMING TECHNIQUES: LOOPING,
COUNTING, AND INDEXING

/

§
/

v

J

/

The programming examples illustrated in previous chapters are simple and can be solved
manually. However, the computer surpasses manual efficiency when tasks must be re-
peated, such as adding a hundred numbers or transferring a thousand bytes of data. It is
fast and accurate. ‘

The programming technique used to instruct the microprocessor to repeat tasks is
called looping. A loop is set up by instructing the microprocessor to change the sequence
of execution and perform the task again. This process 1s accomplished by using Jump in-
structions. In addition, techniques such as counting and indexing (described below) are
used in setting up a loop.

Loops can be classified into two groups:

0 Continuous loop—repeats a task continuously
D‘:- Conditional loop—repeats a task until certain data conditions are met

They are described in the next two sections.

. "V;”fT. 11 Continuous Loop

7

7
'
r

PR

;’l A continuous loop is set up by using the unconditional Jump instruction shown in the

flowchart (Figure 7.1).

FIGURE 7.1 S
Flowchart of a Continuous Loop

)

>

i

Perform
Task

4

Vg e 4 Go Back
) and
Repeat

Scanned with CamScanner

~RAMMING TECHNI
PEOG QUES WITH ADDITION AL INSTRUCTIONS

A program with a continuous
loop does not stop repeating the tasks until the sys-

is reset. Typical examples of

L 8. Section 8.2) or a Of such a program include a i

Chapter 8 : continuous monitor syst continuous counter (se€
system.

7.12 Conditional Loop

onditional loop is set u .
AC P by the conditional Jump instructions. These instructions

check flags (Zero, Carry, etc.) and repeat th i ;
o loops Usu ally fnchude Counting e ii sg:ic;ged tasks if the' conditions are satisfied.

CONDITIONAL LOOP AND COUNTER '\~

A counter is a typical application of the conditi i
croprocessor repeat a task five times? The prolcoer;?ilsogiiiligrr ;X?}Iglslz,f zotlrdfaise;hii 13;
Tndy 500 going around th.e track 500 times. How does the racer know when 500 laps have
been com.pleted? The racing team manager sets up a counting and flagging methodpfor the
racer. This can b.e symbolically represented as in Figure 7.2(2). A similar approach 1is
needed for the microprocessor to repeat the task five times. The microprocessor needs a
counter, and when the counting is completed, it needs a flag. This can be accomplished
with the conditional loop, as illustrated in the flowchart in Figure 7.2(b).

Fowet (Csm)
. Flowcharts to Indicate Nurnier of m

Repetitions Completed
' Set Up Counter Set up Counter
for 500 Laps for Five Tasks
I K
rG'o Around TracLJ
; « Task Performed
+ One Lap
Completed s Reduce Count
« Reduce Count by One
by One

No

Scanned with CamScanner

(b) Twpcmions

215

Scanned with CamScanner

218

.2

PROGRAMMING THE 8085

ADDITIONAL DATA TRANSFER AND 16-BIT

ARITHMETIC INSTRUCTIONS

The instructions related to -the data transfer among microprocessor registers and the VO

instructions were introduced in the last chapter; this section introduces the 1r§s'truct}ons re- \K
lated to the data transfer between the microprocessor and memory. In addition, instruc- -
tions for some 16-bit arithmetic operations are included because they are necessary for \
;Sllln g the programming techniques introduced earlier in this chapter. The opcodes are as
ollows:

1. Loading 16-bit data in register pairs
LXI Rp: Load Register Pair Inmediate
2. Data transfer (copy) from memory to the microprocessor
MOV R,M: Move (from memory to register)
LDAX B/D: Load Accumulator Indirect
LDA 16-bit: Load Accumulator Direct
3. Data transfer (copy) from the microprocessor to memory
MOV M,R: Move (from register to memory)
STAX B/D: Store Accumulator Indirect
STA 16-bit: Store Accumulator Direct
4. Loading 8-bit data directly in memory register (location)
MVI M,8-bit: Load 8-bit data in memory
5. Incrementing/Decrementing Register Pair
INX Rp: Increment Register Pair
DCX Rp: Decrement Register Pair

The instructions related to these operations are illustrated with examples in the fol-

lowing sections.

721 16-Bit Data Transfer to Register Pairs (LXI)

The LXI instructions perform functions similar to those of the MVI instructions, except
that the LXI instructions load 16-bit data in register pairs and the stack pointer register.

These instructions do not affect the flags. .
INSTRUCTIONS
Opcode Operand

LXI Rp, 16-bit Load Register Pair

LXI B, 16-Bil O This is a 3-byte instruction

LXI D,16-bit O The second byte is loaded in the low-order register

. of the register pair (e.g.. register C)
LXI H,16-bit O The third byte is loaded in the high-order

register pair (e.g., register B)

Scanned with CamScanner

2168

- PROGRAMMING TECHNIQUES WITH ADDITIONAL INSTRUCTIONS

LXI SP,16-bit O There are four such instructions in the set as
shown. The operands B, D, and H represent BC,
DE, and HL registers, and SP represents the
stack pointer register
Write instructions to loac? the 16-bit number 2050H in the register pair HL using LXI and Example
MVI opcodes, and explain the difference between the two instructions. - 1.2

Instructions Figure 7.4 shows the regi _
: ister cont : .

Example 7.2. g ents and the instructions required for

The LXT instruction is fungtionally similar to two MVI instructions. The LXI in-

struction takes three b.ytes of ‘memory and requires ten clock periods (T-states). On the

other hand, two MVI instructions take four bytes of memory and require 14 clock peri-

ods (T-states).
LXI Machine
- Code Mnemonics Comments
H 20 50 L 21 LXI H,2050H ;Load HL registers
{} 50* ' :50H in L register and
- \/ , - 20 20H in H register
MVI
| : l_ 26 MVI H,20H Load 20H in register H
5 20
H 20 50 | P e
2E MVI L,50H ;:Load 50H in register L
{e ’
*NOTE: The order of the LXI machine code is reversad in relation 10 the
mnemonics; low-order byte first followed by the high-order byte. This is
similar to Jump instructions.
FIGURE 7.4

&2 v e e

Instructions and Register Contents for Examp

7.22 Data Transfer (Copy) from Memory to the Microprocessor

~The 8085 instruction set includes three types of memory transfer instructions: two use the
. indirect addressing mode ‘and one uses the direct addressing mode. These instructions do
- not affect the flags.

. ‘1. MOV R,M: Move (from Memory to Registcr)
7 O This is a 1-byte instruction

Scanned with CamScanner

220

pROGRAMMING THE 8085

ion into a register
memory Jocation 1 Hoand L
o edpiesibedaae T [?:gismrs A.B, C O ff the HL register
01 R represents micropro®s? oy by the contents O ¢ & = lied
O The memory location is SPe¢l ation is indirect; e
. . ory loc
O This specification of the mem
indirect addressing mode
2. LDAX B/D: Load Accumulator Indirect
O This is a 1-byte instruction
LDAX B O It copies the data byte from the me
LDAX D O The instruction set includes tWO ns
O The memory location is specified by
or DE '
O The addressing mode is indirect
3. LDA 16-bit: Load Accurnulator Direct
0 This is a 3-byte instruction _ . -
O It copies the }(]iata byte from the memory location spvciﬁt’?é Al?‘)":theA 16
bit address in the second and third byte 40 A4-heo g'adress)
U The second byte is a line number (low-order memory a

O The third byte is a page number (high-order memory address)
L) The addressing mode is direct

e i accumulator
tion into the
mory loca

i own
ctions as sh :
truthe contents of the registers BC

Axample
%3

Solution

o

The memory location 2050H holds the data byte F7H. Write instructions to transfer th:
data byte to the accumulator using three different opcodes: MOV, LDAX, and LDA.

Figure 7.5 shows the register contents and the instructions required for Example 7.3. All
of these three instructions copy the data byte F7H from the memory location 2050H 1o

the accumulator.
In Figure 7.5(a), register HL is first loaded with the 16-bit number 2050H. The in-

struction MOV A M uses the contents of the HL register as a memory pointer to location
ZOSOH; this is the indirec?t addre’ssing mode. The HL register is used frequently as a mem-
ory pointer beFause any instruction that uses M as ap operand can copy from and into am
one of the registers. g
In Figure 7.5(b), the contents of register BC are used as a memg S _—
tion 2050H by the instruction LDAX B, Registers BC and DE can bcrz‘gg’rll‘crlt‘o oud
memory pointers to copy the contents of only the accumulator inte b,L - rmeL,[.L‘.
versa; however, they cannot be used to copy the contents of other _"nc.mory and vice
Figure 7.5(c) illustrates the direct addressing mode: the j ‘mg\l§ters, -
the memory address 20504 directly as a part of jtg Operm;d "iuction LDA Speeihs

the indirect addressing

Why not just use the direct addressing mode? ¢e bytes, The question is:

If only one byte is to pe ransferred, the Lpa instructj
on

a block of themory transfer, the instructiop LDA (three bytes) 'S More efficien. But for

Wil have to be repeated for

Scanned with CamScanner

| RAMMING TECHNIQUE
pROC S WITH ADDITIONAL 1y
STRUCTIONS 221

MOV
Fl R M Maclu'ne
5- \hﬂemow Code Mnemonics
A Flags _ |F
: - & 21 LXI H,2050H
D - E 2050 | F7 50
e 20 50 L 20
TE MOV AM
(a)
LDAX Rp
!F7 .
A Flags P
B 20 50 c—— <5)1 LXI B,2050H
D 7 B 2050 [F7 28
H L 0A LDAX B
(b)
LDA 16-Bit
uF7
3A LDA 2050H
A Flags F) 50
20
2050 | F7
\
(c)
FIGURE 7.5

Instructions and Register Contents for Example 7.3

e set up with two other instructions, and the

each memory. On the other hand, a loop can b inst :
d. This is further illustrated

contents of 3 register pair can be incremented or decremente
In Section 7.26.

'7’;23 /6ata Transfer (Copy) from the Microproce
. or Directly into Memozy _ :
'Th‘e instructions for copying data from the microprocessor to a memory location are sim-
: J!ar;‘;o those described in the previous section. These Instructions

Memory)-

ction that copies d
fied by the conten

ssor to Memory

are as follows:

ata from a register, R, into the

] MOV M,R: Move (from Register t0
» ‘ ts of HL registers

O This is a 1-byte instru¢
1 specl

memory locatiof

Scanned with CamScanner

PR OGRAMNINE HHE EUag

he accumulator intq

. Tom t
2. STAX B/D: Store Accumulator Indlrec[t'on that copies dattarlfs of either BEGERS e
: .. : cti e
—— O 'flhls is a l'bly tealtlil;:lgpeciﬁed by the €O”
the memory 10€
STAX D isters 5 from the accumulator intg

3. STA 16-bit: tor Direct ies dat
it: Store Accumulator (hat copics d t operaﬂd-

O This is a 3-byte instruction . the 16-bi
the memory location Spec! . 8 bit dat
4. MVI M, 8-bit: i in memory te SpeclﬁCS = ata
,8-bit: Load 8-bit data 1 on; the second bY < of the HL reg.

O This is a two-byte instrvet by the content

O The memory location iS SPC
ister :

cified

e

: . X to copy the con-
1. Register B contains 32H. Illustrate the instructions MOV and STA P

e sing.
tents of register B into memory location SOOOH' using indirect adcggg OHg usine direct
2. The accumulator contains F2H. Copy (A) into memory locathn . ERC Lt

addressing. s .
3. Load F2H directly in memory location 8000H using indirect addressing.

Figure 7.6 shows the register contents and the instructions for Example 7.4. In Figur:
7.6(a), the byte 32H is copied from register B into memory location 8000H by using
HL as a memory pointer. However, in Figure 7.6(b), where the DE register is used as -
memory pointer, the byte 32H must be copied from B into the accumulator first becaus::
the instruction STAX copies only from the accumulator.

In Figure 7.6(c), the instruction STA copies 32H from the accumulator into th:
memory location 8000H. The memory address is specified as the operand: this is an i
lustration of the direct addressing mode. On the other hand, Figure 7.6(d) illustrates hov

to load a byte directly in memory location by using the HL as 2 memory pointer
3 er.

~

~ The instructions related to incrementing/decrementin,

7.24 Arithmetic Operations Related to 16 Bits or Register Pairs
ster Pai

. : 16-bit ¢ : ; :
are introduced below. These instructions do not 'lffectgﬂ " bit contents in a register paf
k ags.

1. INX Rp: Increment Register Pair
D) This is a 1-byte instruction
INXB U It treats the contents of two re
INX D creases the contents by 1
INXH U The instruction set includes four instryey
§ 10ns

Scanned with CamScanner

gisters gag .
45 one 16-bjy number and 11

|
I

MOV M, R Machine
Code Mnemonics
A F
B 32 7 1c < 21 LXI H,8000H
B o - B E—" 8000 00
— 80 m - 80
H L 70 MOV M,B
(a)
This instruction copies the contents of the
STAX Rp accumulator into memeory. Therefore, it
is necessary first to copy (B) into A.
11] LXI D,8000H
- B C : 80
D 80 0o |E—>800 78 MOV A.B
H L 12 STAX D
(b)
This also requires the transfer of (B) to
STA 16-Bit N
A F2 F F2 32 STA 8000H
00
8000
(c) 80
21 LXTI H,8000H
00
80
i D 00 L — 8000| F2 36 MVI M.F2H
F2
(d)
FIGURE 7.6

Instructions and Recpster Contents for Example 7 q

2. DCX Rp: Decrement Register Pair .
‘i a 1-byte instruction . y .
DCX B g ’Irh(lih- fi-:\c\ the 16-bit contents of a reglsjtcr pair by l,
\/‘ DCXD 0O 'l‘"h LiLr]:;r‘u«.:tion cet includes four instructions. as shown
e ins -
DCX H
DCX Sp

Scanned with CamScanner

223

A\

1.25 Review of Instructions N
icroprocessor i

In this section, we examined primarily how to COPY dota fmmhthgsr?)f Copyino (];tr IETJ

memory and vice versa. The 8085 instruction provides three metho pying data be.

tween the microprocessor and memory:
ter: This is the most flexible and fre.

d to copy between any one of the reg-
d M automatically assumes the HL

1. Indirect addressing using HL as a memory poin
quently used method. The HL register can be use
T isters and memory. Any instruction with the operan

1s the memory pointer. , X ,
2. Indirect addressing using BC and DE as memory pointers: The instructions LDAX an.

STAX use BC and DE as memory pointers. However, this method is restricted
copying from and into the accumulator and cannot be used for other registers. In oo
dition, the mnemonics (LDAX and STAX) are somewhat misleading; therefore, care-

ful attention must be given to their interpretion.
Direct addressing using LDA and STA instructions: These instructions include mem:

ory address as the operand. This method is also restricted to copying from and into the

accumulator.

In addition to the above data copy instructions, we discussed two instructions. INA
and DCX, concerning the register pairs. The critical feature of these instructions is thi!

they do not affect the flags.

7.26 Illustrative Program: Block Transfer of Data Bytes

a PROBLEM STATEMENT
Sixteen bytes of data are stored in memory locations at XX50H to XXSFH_ Transier !

/ entire block of data to new memory locations starting at X X70H -

Scanned with CamScanner

pata() 37.A2, F2,

ROGRAMMING TECHNIQUES wrry
P ADDITIONAL, INsTRUCTIONS

82, 57
+>A- 7. DA, S, 88, A7, C2, B8, 10, 19, 0
PROBLEM ANALYSIS
The problem can be analyzed in terms
7.8). The steps are as follows:
The ﬂow-chan In Figure 7.8 incluges five blocks:
numbers referring to the blocks in the gener: e

is not concemﬁed with data manipulation (processing); therefore the flowchart does 2
quire .B10cks 3 and 4 (data Processing and temporary storage of’ partial results) ’;}:c”":(r;:
le-n.I su'.nply deals with the transferring of the data bytes from one locati('m [.r) ;xn()thgr ;0-
cation in memory: therefore, the Store Data Byte block is equivalent to th) ck
in the generalized flowchart, ! e

Block 1 is the initialization block: this block Sels up two memory pointers and one
counter. Block 5 is concerned with updating the memory pointers and the cr)ﬁntcr. “ﬂu;

‘ Start ’

F > | PAPS PV .
of the blocks suggested in the flowchart (Figure

/ these blocks are identified with
ized flowchart in Figure 7.3. This problem

¥ \/ 4 Mnemonics Steps

* Set Up Memory Pointer LXI H,XXS0H 1. Set up HL as a pointer for the source
for the Source memory
* Set Up Memory Pointer | Block | LXI D,XX70H Set up DE as a pointer for the destinztion
for the Destination memory
» Set Up Byte Counter MVI B,10H Set up B as byte counter
y
Get Data Byte Block 2 NEXT: MOV AM 2. Get data byte from the source memon
Store Data Byte Block 7 STAX D 3. Store the data byte in destination mem-
ory
i
* Source Pointer =
Source Pointer + | }:;gg P i N
: aay fransfer next byte
* Destination Pointer = Block 5 e ’
Destination Pointer + | DCR B
* Count = Count ~ |

Block 6 +0

HLT

FIGURE 7.8

'éWch'an for Block Transfer of Datd Bytes

Scanned with CamScanner

JNZ NEX'T 5. Go back 1o get next byte if byte counter

-/

as algebraic equations: ho,.

, ¢ read ; the
nge if the)’tzgoin ‘er = Pointer | means the e,
en

ar strd
block aPPE " o state ne. -
he . ns. Th e by O - ith the mnemonics In

statements shown in the & pations: va
ever, they are nczjt ;lg?::?é;ﬂting the Pr:;’:cusi,ond qne—to“t’i‘;‘;l “;s well as undesirap),
ki "ll"shzb;z::tl:megts in the flowcha owchart are 1mprfi1§ flow in writing programs]5
large programs, such detai.ls in tl;e orc t0 ShOW the lofsily from the flowchart. For ¢, _
However, these details are II.ICIUde be eliminated very © t- such as, Transfer Data Byte
Figure 7.8, some of the details can pined in one statemﬁc?) od to one st atement; such 4
?mples, Blocks %aﬂt{l ’;tiC:: g?r;ic]):rlly, Block 5 can be reduc :
rce to Destination.
lggglateoslemory Pointers and Counter.
PROGRAM
I\A/[;:inrzg Hex Instructions . it
HI.LO Code Label ~ Opcode ~ Operan
XX00 21 START: LXI H,XX50H :Set up HL as a h
01 50 ; pointer for sourc:
02 XX , memory
03 11 LXI D,XX70H :Set up DE as
04 70 ; a pointer for
05 XX ; destination
06 06 MVI B,10H ;Set up B to count
8; '}'g NEXT: MOV o1 DYtes
' AM ;Get data byte from
; source memory
09 12 STAX D ;Store data byte at
0A 23 INX - . destination
;Point HL 1o next
0B 13 INX & . source location
Point DE 1o
oe 05 DCR B v next destination
;One transfer is
0D o + complete,
OE 08 INZ NEXT +decrement count
OF XX It counter is not 0.
10 76 ' 80 back to transter
HLT * next hyte
XISO .17 End of program
XXSF 08 Daty

Scanned with CamScanner

